AWS Deep Learning Containers发布TensorFlow 2.18.0 ARM64推理容器
AWS Deep Learning Containers(DLC)项目为机器学习开发者提供了预配置的Docker容器镜像,这些镜像经过优化可以直接在AWS云平台上运行。该项目通过预装深度学习框架、依赖库和工具,大大简化了机器学习环境的部署过程。
最新发布的v1.12版本带来了TensorFlow 2.18.0推理容器的ARM64架构支持,这是一个专为基于ARM处理器的计算环境优化的容器镜像。该镜像基于Ubuntu 20.04操作系统构建,使用Python 3.10作为默认Python环境,并且仅支持CPU计算模式。
技术规格与特性
这个TensorFlow推理容器镜像包含了以下关键组件和特性:
-
核心框架:集成了TensorFlow Serving API 2.18.0版本,这是一个专为生产环境优化的高性能服务系统,能够轻松部署机器学习模型并提供预测服务。
-
Python环境:基于Python 3.10构建,这是当前Python生态系统中的一个稳定版本,平衡了新特性和稳定性。
-
系统依赖:包含了必要的系统库如libgcc和libstdc++,确保TensorFlow在ARM64架构上的稳定运行。
-
开发工具:预装了Emacs编辑器及其相关组件,方便开发者直接在容器内进行代码编辑和调试。
-
AWS集成:包含了AWS CLI 1.37.18、boto3 1.36.18等AWS工具包,便于与AWS云服务进行交互。
适用场景
这个ARM64架构的TensorFlow推理容器特别适合以下应用场景:
-
边缘计算:在基于ARM处理器的边缘设备上部署轻量级机器学习推理服务。
-
成本优化:利用ARM实例通常具有的性价比优势,降低机器学习推理服务的运营成本。
-
持续集成/持续部署:为ARM架构构建标准化的测试和部署环境。
-
模型服务化:快速将训练好的TensorFlow模型部署为可扩展的预测服务。
使用建议
对于考虑使用此容器的开发者,建议注意以下几点:
-
该镜像仅支持CPU推理,如需GPU加速,需要选择其他支持GPU的版本。
-
由于基于ARM64架构,部署时需确保目标运行环境兼容此架构。
-
容器中已包含常用Python包如NumPy、Pandas等,但如需额外依赖,可通过pip安装。
-
对于生产环境部署,建议进一步优化容器配置,如设置适当的资源限制和安全策略。
AWS Deep Learning Containers项目通过提供这些预构建、测试和优化的容器镜像,显著降低了机器学习应用部署的复杂度,使开发者能够更专注于模型开发和业务逻辑实现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00