HackWebRTC 项目教程
2024-09-28 06:18:09作者:谭伦延
1. 项目的目录结构及介绍
HackWebRTC 项目的目录结构如下:
HackWebRTC/
├── api/
├── audio/
├── base/
├── call/
├── common_audio/
├── common_video/
├── logging/
├── media/
├── modules/
├── ortc/
├── p2p/
├── pc/
├── rtc_base/
├── rtc_tools/
├── sdk/
├── stats/
├── system_wrappers/
├── video/
├── webrtc_src_extractor.py
├── README.md
├── LICENSE
└── WebRTC_classes_23261.svg
目录介绍:
- api/: 包含 WebRTC API 的相关文件。
- audio/: 包含音频处理的相关文件。
- base/: 包含基础库的相关文件。
- call/: 包含通话逻辑的相关文件。
- common_audio/: 包含通用音频处理的相关文件。
- common_video/: 包含通用视频处理的相关文件。
- logging/: 包含日志系统的相关文件。
- media/: 包含媒体处理的相关文件。
- modules/: 包含各种模块的相关文件。
- ortc/: 包含 ORTC 协议的相关文件。
- p2p/: 包含点对点通信的相关文件。
- pc/: 包含 PeerConnection 的相关文件。
- rtc_base/: 包含 WebRTC 基础库的相关文件。
- rtc_tools/: 包含 WebRTC 工具的相关文件。
- sdk/: 包含 SDK 的相关文件。
- stats/: 包含统计信息的相关文件。
- system_wrappers/: 包含系统包装器的相关文件。
- video/: 包含视频处理的相关文件。
- webrtc_src_extractor.py: 用于提取 WebRTC 源代码的 Python 脚本。
- README.md: 项目介绍和使用说明。
- LICENSE: 项目许可证文件。
- WebRTC_classes_23261.svg: WebRTC 类图文件。
2. 项目的启动文件介绍
HackWebRTC 项目没有明确的启动文件,因为它是一个库项目,而不是一个独立的应用程序。开发者需要根据具体需求,在自己的项目中集成和使用 HackWebRTC 库。
3. 项目的配置文件介绍
HackWebRTC 项目没有传统的配置文件,但开发者在使用 WebRTC 静态库时,需要注意以下几点配置:
3.1 禁用 RTTI
在使用 WebRTC 静态库时,需要在项目设置中禁用 RTTI(运行时类型信息),否则链接器可能会失败,提示类似 undefined reference to 'typeinfo for rtc::MessageHandler' 的错误。
3.2 添加必要的定义
根据目标平台,需要在项目中添加以下定义:
- Android:
WEBRTC_POSIX,WEBRTC_LINUX,WEBRTC_ANDROID - iOS:
WEBRTC_POSIX,WEBRTC_MAC,WEBRTC_IOS
3.3 提取 WebRTC 静态库
由于 GitHub 的文件大小限制,项目中没有包含 libwebrtc.a 文件。开发者需要手动提取该文件,并将其放置在 app/libs/webrtc/lib/armeabi-v7a/ 目录下,然后再进行构建。
3.4 使用 webrtc_src_extractor.py 脚本
如果开发者只需要使用 WebRTC 代码的一部分,可以使用 webrtc_src_extractor.py 脚本提取相关的源文件和头文件。该脚本会将所需的文件复制到目标目录中。
python webrtc_src_extractor.py <repo dir> <dst dir> <wanted src file seperated by space>
注意:该脚本只是一个尽力而为的工具,开发者可能仍需手动复制一些源文件。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
296
2.64 K
Ascend Extension for PyTorch
Python
128
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
607
190
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
588
127
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
611
仓颉编译器源码及 cjdb 调试工具。
C++
122
474
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
178
62
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
454