Ascend Samples 开源项目教程
项目介绍
Ascend Samples 是一个开源项目,旨在为开发者提供基于华为 Ascend 芯片的 AI 应用开发示例和教程。该项目包含了多个领域的应用案例,涵盖了图像识别、自然语言处理、语音识别等多个 AI 应用场景。通过这些示例,开发者可以快速上手 Ascend 芯片的开发,并了解如何在实际项目中应用 Ascend 芯片的强大计算能力。
项目快速启动
环境准备
在开始之前,请确保您已经安装了以下软件和工具:
- Python 3.7 或更高版本
- Ascend 开发工具包(请参考官方文档进行安装)
- Git
克隆项目
首先,克隆 Ascend Samples 项目到本地:
git clone https://github.com/Ascend/samples.git
cd samples
安装依赖
进入项目目录后,安装所需的 Python 依赖包:
pip install -r requirements.txt
运行示例
以图像分类示例为例,运行以下命令启动示例:
python examples/image_classification/main.py
该命令将加载预训练模型并对指定图像进行分类。
应用案例和最佳实践
图像识别
Ascend Samples 提供了多个图像识别的示例,包括物体检测、图像分类等。这些示例展示了如何使用 Ascend 芯片进行高效的图像处理。
自然语言处理
在自然语言处理领域,Ascend Samples 提供了文本分类、情感分析等示例。这些示例帮助开发者理解如何在 Ascend 芯片上进行大规模的文本数据处理。
语音识别
语音识别示例展示了如何使用 Ascend 芯片进行实时语音识别。开发者可以通过这些示例学习如何构建高效的语音识别系统。
典型生态项目
ModelZoo
ModelZoo 是 Ascend 生态中的一个重要项目,提供了大量预训练的 AI 模型。开发者可以直接使用这些模型进行推理或进一步训练,大大加速了 AI 应用的开发过程。
MindSpore
MindSpore 是华为推出的深度学习框架,与 Ascend 芯片深度集成。Ascend Samples 中的示例大多基于 MindSpore 框架,开发者可以通过这些示例学习如何使用 MindSpore 进行 AI 开发。
CANN
CANN(Compute Architecture for Neural Networks)是 Ascend 芯片的计算架构,提供了高效的神经网络计算能力。Ascend Samples 中的示例展示了如何利用 CANN 进行高性能的 AI 计算。
通过以上内容,开发者可以快速上手 Ascend Samples 项目,并了解如何在实际项目中应用 Ascend 芯片的强大计算能力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~047CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









