Ascend Samples 开源项目教程
项目介绍
Ascend Samples 是一个开源项目,旨在为开发者提供基于华为 Ascend 芯片的 AI 应用开发示例和教程。该项目包含了多个领域的应用案例,涵盖了图像识别、自然语言处理、语音识别等多个 AI 应用场景。通过这些示例,开发者可以快速上手 Ascend 芯片的开发,并了解如何在实际项目中应用 Ascend 芯片的强大计算能力。
项目快速启动
环境准备
在开始之前,请确保您已经安装了以下软件和工具:
- Python 3.7 或更高版本
- Ascend 开发工具包(请参考官方文档进行安装)
- Git
克隆项目
首先,克隆 Ascend Samples 项目到本地:
git clone https://github.com/Ascend/samples.git
cd samples
安装依赖
进入项目目录后,安装所需的 Python 依赖包:
pip install -r requirements.txt
运行示例
以图像分类示例为例,运行以下命令启动示例:
python examples/image_classification/main.py
该命令将加载预训练模型并对指定图像进行分类。
应用案例和最佳实践
图像识别
Ascend Samples 提供了多个图像识别的示例,包括物体检测、图像分类等。这些示例展示了如何使用 Ascend 芯片进行高效的图像处理。
自然语言处理
在自然语言处理领域,Ascend Samples 提供了文本分类、情感分析等示例。这些示例帮助开发者理解如何在 Ascend 芯片上进行大规模的文本数据处理。
语音识别
语音识别示例展示了如何使用 Ascend 芯片进行实时语音识别。开发者可以通过这些示例学习如何构建高效的语音识别系统。
典型生态项目
ModelZoo
ModelZoo 是 Ascend 生态中的一个重要项目,提供了大量预训练的 AI 模型。开发者可以直接使用这些模型进行推理或进一步训练,大大加速了 AI 应用的开发过程。
MindSpore
MindSpore 是华为推出的深度学习框架,与 Ascend 芯片深度集成。Ascend Samples 中的示例大多基于 MindSpore 框架,开发者可以通过这些示例学习如何使用 MindSpore 进行 AI 开发。
CANN
CANN(Compute Architecture for Neural Networks)是 Ascend 芯片的计算架构,提供了高效的神经网络计算能力。Ascend Samples 中的示例展示了如何利用 CANN 进行高性能的 AI 计算。
通过以上内容,开发者可以快速上手 Ascend Samples 项目,并了解如何在实际项目中应用 Ascend 芯片的强大计算能力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00