Liger-Kernel 在小模型微调中的内存优化实践
2025-06-10 07:32:45作者:姚月梅Lane
引言
在深度学习模型训练过程中,内存优化一直是开发者关注的重点问题。本文通过一个实际案例,探讨了Liger-Kernel在Qwen2-0.5B模型微调过程中的内存优化效果。
问题背景
在初始测试中,开发者尝试在Google Colab的T4 GPU(16GB显存)上微调Qwen2-0.5B模型,使用wikitext-2-raw-v1数据集。初始配置下(批量大小2,序列长度128),无论是否使用Liger-Kernel,显存占用都达到了10686MiB/15360MiB,没有显示出明显的优化效果。
技术分析
Liger-Kernel的核心优化原理在于对大批量数据(long sequence length)的处理优化,特别是通过FusedLinearCrossEntropy操作实现的内存优化。这种优化在以下场景中效果最为显著:
- 大批量训练(batch size较大时)
- 长序列输入(sequence length较长时)
- 大规模模型训练
优化实践
经过调整参数后的测试结果显示:
-
当批量大小增加到8,序列长度设为512时:
- 不使用Liger-Kernel会出现OOM(内存不足)错误
- 使用Liger-Kernel可以成功完成微调
-
当序列长度设为256时:
- 不使用Liger-Kernel同样会出现OOM
- 使用Liger-Kernel仍能保持稳定训练
关键发现
- 对于小模型(如0.5B参数),只有在适当增大批量大小和序列长度后,Liger-Kernel的内存优化效果才会显现
- 优化效果与模型规模、批量大小和序列长度呈正相关关系
- 在实际应用中,需要根据硬件条件合理配置训练参数才能充分发挥Liger-Kernel的优势
实践建议
-
对于小模型微调,建议尝试以下配置组合:
- 批量大小:≥8
- 序列长度:≥256
- 梯度累积步数:根据显存情况调整
-
监控显存使用情况,逐步增大参数直到找到最优配置
-
注意不同硬件平台(GPU型号)的性能差异,需要针对性调优
结论
Liger-Kernel在模型训练中的内存优化效果是显著的,但其优势的发挥需要合理的参数配置。开发者不应仅凭小批量、短序列的测试结果就否定其价值,而应该在实际应用场景中全面评估。对于资源受限的环境,适当增大训练参数配合Liger-Kernel使用,可以突破原有硬件限制,实现更高效的模型训练。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
263
295
暂无简介
Dart
708
168
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
178
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
836
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
686
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
410
130