首页
/ Liger-Kernel 在小模型微调中的内存优化实践

Liger-Kernel 在小模型微调中的内存优化实践

2025-06-10 18:16:50作者:姚月梅Lane

引言

在深度学习模型训练过程中,内存优化一直是开发者关注的重点问题。本文通过一个实际案例,探讨了Liger-Kernel在Qwen2-0.5B模型微调过程中的内存优化效果。

问题背景

在初始测试中,开发者尝试在Google Colab的T4 GPU(16GB显存)上微调Qwen2-0.5B模型,使用wikitext-2-raw-v1数据集。初始配置下(批量大小2,序列长度128),无论是否使用Liger-Kernel,显存占用都达到了10686MiB/15360MiB,没有显示出明显的优化效果。

技术分析

Liger-Kernel的核心优化原理在于对大批量数据(long sequence length)的处理优化,特别是通过FusedLinearCrossEntropy操作实现的内存优化。这种优化在以下场景中效果最为显著:

  1. 大批量训练(batch size较大时)
  2. 长序列输入(sequence length较长时)
  3. 大规模模型训练

优化实践

经过调整参数后的测试结果显示:

  1. 当批量大小增加到8,序列长度设为512时:

    • 不使用Liger-Kernel会出现OOM(内存不足)错误
    • 使用Liger-Kernel可以成功完成微调
  2. 当序列长度设为256时:

    • 不使用Liger-Kernel同样会出现OOM
    • 使用Liger-Kernel仍能保持稳定训练

关键发现

  1. 对于小模型(如0.5B参数),只有在适当增大批量大小和序列长度后,Liger-Kernel的内存优化效果才会显现
  2. 优化效果与模型规模、批量大小和序列长度呈正相关关系
  3. 在实际应用中,需要根据硬件条件合理配置训练参数才能充分发挥Liger-Kernel的优势

实践建议

  1. 对于小模型微调,建议尝试以下配置组合:

    • 批量大小:≥8
    • 序列长度:≥256
    • 梯度累积步数:根据显存情况调整
  2. 监控显存使用情况,逐步增大参数直到找到最优配置

  3. 注意不同硬件平台(GPU型号)的性能差异,需要针对性调优

结论

Liger-Kernel在模型训练中的内存优化效果是显著的,但其优势的发挥需要合理的参数配置。开发者不应仅凭小批量、短序列的测试结果就否定其价值,而应该在实际应用场景中全面评估。对于资源受限的环境,适当增大训练参数配合Liger-Kernel使用,可以突破原有硬件限制,实现更高效的模型训练。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
73
63
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
922
551
PaddleOCRPaddleOCR
飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署) Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
47
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16