Liger-Kernel 在小模型微调中的内存优化实践
2025-06-10 18:16:50作者:姚月梅Lane
引言
在深度学习模型训练过程中,内存优化一直是开发者关注的重点问题。本文通过一个实际案例,探讨了Liger-Kernel在Qwen2-0.5B模型微调过程中的内存优化效果。
问题背景
在初始测试中,开发者尝试在Google Colab的T4 GPU(16GB显存)上微调Qwen2-0.5B模型,使用wikitext-2-raw-v1数据集。初始配置下(批量大小2,序列长度128),无论是否使用Liger-Kernel,显存占用都达到了10686MiB/15360MiB,没有显示出明显的优化效果。
技术分析
Liger-Kernel的核心优化原理在于对大批量数据(long sequence length)的处理优化,特别是通过FusedLinearCrossEntropy操作实现的内存优化。这种优化在以下场景中效果最为显著:
- 大批量训练(batch size较大时)
- 长序列输入(sequence length较长时)
- 大规模模型训练
优化实践
经过调整参数后的测试结果显示:
-
当批量大小增加到8,序列长度设为512时:
- 不使用Liger-Kernel会出现OOM(内存不足)错误
- 使用Liger-Kernel可以成功完成微调
-
当序列长度设为256时:
- 不使用Liger-Kernel同样会出现OOM
- 使用Liger-Kernel仍能保持稳定训练
关键发现
- 对于小模型(如0.5B参数),只有在适当增大批量大小和序列长度后,Liger-Kernel的内存优化效果才会显现
- 优化效果与模型规模、批量大小和序列长度呈正相关关系
- 在实际应用中,需要根据硬件条件合理配置训练参数才能充分发挥Liger-Kernel的优势
实践建议
-
对于小模型微调,建议尝试以下配置组合:
- 批量大小:≥8
- 序列长度:≥256
- 梯度累积步数:根据显存情况调整
-
监控显存使用情况,逐步增大参数直到找到最优配置
-
注意不同硬件平台(GPU型号)的性能差异,需要针对性调优
结论
Liger-Kernel在模型训练中的内存优化效果是显著的,但其优势的发挥需要合理的参数配置。开发者不应仅凭小批量、短序列的测试结果就否定其价值,而应该在实际应用场景中全面评估。对于资源受限的环境,适当增大训练参数配合Liger-Kernel使用,可以突破原有硬件限制,实现更高效的模型训练。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5