Liger Kernel在大模型训练中的内存优化效果分析
2025-06-10 17:01:37作者:谭伦延
背景
在大型语言模型训练过程中,GPU内存管理一直是核心挑战之一。Liger Kernel作为一种创新的算子优化方案,通过算子融合和分块计算技术,显著降低了训练过程中的动态内存峰值。然而,在实际应用中,不同规模模型上的优化效果存在显著差异,这引发了我们对内存优化机制本质的深入思考。
内存组成分析
现代GPU训练过程中的内存占用可分为两大类型:
- 静态内存
- 包含模型参数、梯度和优化器状态
- 在DeepSpeed Zero-3策略下采用分区存储
- 计算公式:16×参数量(BF16混合精度)
- 示例:14B模型在8卡A100上单卡静态内存约28GB
- 动态内存
- 包含激活值和中间计算结果
- 受梯度检查点技术显著影响
- 交叉熵计算产生主要峰值(约6.96GB)
Liger Kernel优化原理
该技术的核心创新在于:
分块计算策略
- 将传统的大张量计算分解为可控的块计算
- 峰值内存需求降至:块大小×词表量×数据类型
- 典型配置下内存占用降至MB级别
算子融合技术
- 消除中间结果的存储开销
- 减少内存搬运操作
- 提高计算密度
规模效应现象解析
在实际测试中观察到的规模效应主要源于:
- 静态内存主导现象
- 小批量(batch=1)短序列(4096)场景下
- 14B模型静态内存占比达80%以上
- 动态内存优化效果被稀释
- 优化效果的可扩展性
- 当增大批量或序列长度时
- 传统方案内存线性增长(2倍batch→2倍logits内存)
- Liger Kernel保持稳定内存占用
工程实践建议
针对不同规模模型的优化策略:
中小模型(≤7B)
- Liger Kernel可带来30%+内存节省
- 重点优化动态内存管理
- 可适当提高批量提升吞吐
大模型(≥14B)
- 优先解决静态内存瓶颈
- 增加GPU数量改善分区效果
- 结合CPU/NVMe offloading技术
- Liger Kernel为后续扩展预留空间
技术展望
未来优化方向可能包括:
- 静态内存的智能分区算法
- 动态分块大小的自适应调整
- 与量化训练的协同优化
- 多维度内存压缩技术
通过深入理解内存组成和优化技术的相互作用,开发者可以更精准地设计训练方案,充分发挥Liger Kernel等创新技术的潜在价值。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217