Liger-Kernel v0.5.4版本发布:支持Granite 3.0/3.1与OLMo2模型,新增GRPO与TVD损失函数
Liger-Kernel是LinkedIn开源的一个深度学习训练框架内核,专注于为大规模语言模型提供高效的训练支持。该项目集成了多种优化技术,包括自定义内核、高效注意力机制实现以及创新的损失函数等,旨在提升模型训练的速度和效果。
核心功能更新
Granite 3.0/3.1模型支持
本次更新正式添加了对IBM Granite系列3.0和3.1版本模型的支持。Granite是IBM推出的一系列基础大模型,在多个自然语言处理任务上表现出色。Liger-Kernel通过优化其计算图执行和内存管理,能够更高效地训练这些模型。
OLMo2模型集成
OLMo(Open Language Model)是AI2研究所开发的开源语言模型家族。v0.5.4版本新增了对OLMo2模型的支持,包括其特有的架构细节和训练配置。这使得研究人员可以在Liger-Kernel框架下更高效地训练和微调OLMo2模型。
新增损失函数
GRPO损失函数
GRPO(Generalized Reinforcement Policy Optimization)是一种新型的强化学习优化目标,特别适用于语言模型的强化学习微调场景。相比传统的PPO方法,GRPO提供了更稳定的训练动态和更好的收敛特性。
TVD损失函数
Total Variation Distance(TVD)损失是一种基于概率分布差异的度量方式,常用于生成模型的训练中。Liger-Kernel实现了高效的TVD损失计算内核,支持在各种硬件设备上快速执行。
性能优化与稳定性改进
-
Intel GPU支持增强:改进了对Intel GPU的兼容性,新增了相关的CI测试流程,确保在Intel硬件上的稳定运行。
-
层归一化内核修复:修正了层归一化(LayerNorm)内核中的若干问题,提升了训练稳定性。
-
注意力机制优化:针对共享前缀的掩码注意力场景进行了特别优化,提高了长序列处理的效率。
-
测试覆盖扩展:新增了多个模型的测试用例,包括Qwen2VL和MLlama等,确保更广泛的模型兼容性。
开发者体验改进
-
文档更新:详细记录了ROCm平台的安装指南,帮助AMD GPU用户更快上手。
-
脚本优化:改进了Hugging Face SFT(Supervised Fine-Tuning)脚本,使其更易于使用和扩展。
-
基准测试数据:新增了KTO(Knowledge Tracing Optimization)的基准测试结果,方便用户评估性能。
技术实现细节
在底层实现上,v0.5.4版本包含多项内核级优化:
- 改进了计算图分割策略,支持更灵活的并行计算配置
- 优化了ROPE(Rotary Position Embedding)的实现,修复了相关测试用例
- 增强了内存管理子系统,减少了大模型训练时的内存碎片
这些改进使得Liger-Kernel在训练大规模语言模型时能够更充分地利用硬件资源,提高训练效率。
总结
Liger-Kernel v0.5.4版本通过新增模型支持和损失函数,进一步扩展了其在大语言模型训练领域的适用性。同时,多项性能优化和稳定性改进使得框架更加成熟可靠。对于从事大规模语言模型研究和开发的人员来说,这一版本提供了更多工具选择和技术支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00