SciML/JumpProcesses.jl 教程:离散随机过程与Gillespie方法详解
2025-06-04 19:21:56作者:董宙帆
引言
本文将深入讲解如何使用SciML生态系统中的JumpProcesses.jl包来定义和模拟连续时间跳跃过程(也称为点过程)。在生物学领域,这类模型常被称为随机化学动力学模型或Gillespie模型。我们将通过一个经典的SIR传播模型示例,全面介绍JumpProcesses.jl的核心功能和使用方法。
模型背景:SIR传播动力学
SIR模型是流行病学中描述传播动态的经典模型,它将人群分为三类:
- 易感者(Susceptible, S):可能被影响的健康人群
- 感染者(Infected, I):已影响并可传播的群体
- 康复者(Recovered, R):已恢复并获得免疫力的群体
模型包含两个基本反应过程:
- 传播过程:易感者与感染者接触后转变为感染者
- 康复过程:感染者康复并获得免疫力
数学建模
在数学上,SIR模型可以用跳跃过程来描述。设S(t)、I(t)、R(t)分别表示t时刻三类人群的数量,模型可表示为:
\begin{aligned}
S(t) &= S(0) - Y_1\left(\int_0^t \beta S(s^-)I(s^-)ds\right) \\
I(t) &= I(0) + Y_1\left(\int_0^t \beta S(s^-)I(s^-)ds\right) - Y_2\left(\int_0^t \nu I(s^-)ds\right) \\
R(t) &= R(0) + Y_2\left(\int_0^t \nu I(s^-)ds\right)
\end{aligned}
其中Y₁和Y₂是独立的单位泊松过程,β是传播率参数,ν是康复率参数。
实现方法一:使用Catalyst构建反应网络
对于化学/生物系统,推荐使用Catalyst.jl来方便地构建模型:
using Catalyst
sir_model = @reaction_network begin
β, S + I --> 2I # 传播过程
ν, I --> R # 康复过程
end
定义参数和初始条件:
p = (:β => 0.1/1000, :ν => 0.01)
u₀ = [:S => 990, :I => 10, :R => 0]
tspan = (0.0, 250.0)
构建离散问题并转换为跳跃问题:
prob = DiscreteProblem(sir_model, u₀, tspan, p)
jump_prob = JumpProblem(sir_model, prob, Direct())
求解并可视化:
sol = solve(jump_prob, SSAStepper())
plot(sol)
实现方法二:直接使用JumpProcesses底层接口
JumpProcesses提供了三种跳跃类型,按性能从高到低排序:
- MassActionJump:性能最佳,适用于质量作用定律的反应
- ConstantRateJump:中等性能,适用于速率恒定的跳跃
- VariableRateJump:最灵活但性能最低,适用于速率随时间变化的跳跃
使用ConstantRateJump
定义传播和康复两个跳跃过程:
β = 0.1/1000.0
ν = 0.01
p = (β, ν)
# 传播过程
rate1(u, p, t) = p[1] * u[1] * u[2] # β*S*I
function affect1!(integrator)
integrator.u[1] -= 1 # S减少1
integrator.u[2] += 1 # I增加1
end
jump1 = ConstantRateJump(rate1, affect1!)
# 康复过程
rate2(u, p, t) = p[2] * u[2] # ν*I
function affect2!(integrator)
integrator.u[2] -= 1 # I减少1
integrator.u[3] += 1 # R增加1
end
jump2 = ConstantRateJump(rate2, affect2!)
构建并求解问题:
u₀ = [999, 10, 0]
tspan = (0.0, 250.0)
prob = DiscreteProblem(u₀, tspan, p)
jump_prob = JumpProblem(prob, Direct(), jump1, jump2)
sol = solve(jump_prob, SSAStepper())
plot(sol, label=["S(t)" "I(t)" "R(t)"])
性能优化建议
- 对于符合质量作用定律的反应,优先使用MassActionJump
- 当跳跃速率在跳跃间恒定不变时,使用ConstantRateJump
- 只有当速率显式依赖时间时才考虑使用VariableRateJump
- 对于VariableRateJump,如果可以提供速率上界,使用有界版本提高性能
扩展应用
JumpProcesses.jl还支持:
- 混合跳跃过程和连续动态(ODE/SDE)的混合系统
- 近似模拟的τ-leaping方法(通过RegularJump)
- 复杂的时间依赖速率函数
- 各种保存控制以减少内存使用
结论
本文详细介绍了使用JumpProcesses.jl构建和模拟离散随机过程的两种主要方法:通过Catalyst.jl的高级接口和直接使用JumpProcesses的底层接口。通过SIR传播模型的示例,我们展示了如何定义跳跃过程、设置模拟参数以及可视化结果。理解不同跳跃类型的性能特点和适用场景,可以帮助用户在模型复杂性和计算效率之间做出合理的选择。
JumpProcesses.jl作为SciML生态系统的重要组成部分,为复杂随机系统的建模和仿真提供了强大而灵活的工具,特别适合生物化学、流行病学、系统生物学等领域的研究应用。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

暂无简介
Dart
529
116

仓颉编程语言运行时与标准库。
Cangjie
122
93

仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
52
50

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
73
102

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
104