SciML/JumpProcesses.jl 教程:理解跳跃扩散方程与马尔可夫过程
2025-06-04 22:22:37作者:冯梦姬Eddie
前言
在科学计算和工程建模中,我们经常需要处理同时包含连续和离散随机过程的系统。JumpProcesses.jl 作为 SciML 生态系统的重要组成部分,专门用于解决这类混合了确定性微分方程、随机扩散和离散跳跃的复杂问题。本文将带你深入了解如何使用 JumpProcesses.jl 构建和求解跳跃扩散方程和分段确定性马尔可夫过程。
基本概念
什么是跳跃扩散方程?
跳跃扩散方程是包含三种动态的随机微分方程:
- 确定性漂移:由常微分方程描述的系统演化
- 随机扩散:由布朗运动描述的连续随机波动
- 随机跳跃:由泊松过程描述的离散随机事件
数学表达式为:
du = f(u,p,t)dt + \sum_{j}g_j(u,p,t)dW_j(t) + \sum_{i}h_i(u,p,t)dN_i(t)
什么是分段确定性马尔可夫过程?
当方程中不包含扩散项(即所有 g_j = 0)时,我们称其为分段确定性马尔可夫过程(PDMP)。这类过程在系统演化过程中会经历离散的跳跃事件,而在跳跃之间则遵循确定性动力学。
环境准备
在开始前,请确保已安装必要的包:
using Pkg
Pkg.add("DifferentialEquations")
Pkg.add("Plots")
加载包并设置绘图默认参数:
using DifferentialEquations, Plots
default(; lw = 2)
构建常数率跳跃问题
问题定义
考虑一个线性ODE,耦合一个速率为2的泊松计数器。每次跳跃发生时,当前解的值将减半。
首先定义ODE问题:
function f(du, u, p, t)
du[1] = u[1] # 线性增长
nothing
end
prob = ODEProblem(f, [0.2], (0.0, 10.0)) # 初始值0.2,时间范围0-10
跳跃定义
定义常数跳跃率和影响函数:
rate(u, p, t) = 2 # 固定跳跃率2
function affect!(integrator)
integrator.u[1] /= 2 # 每次跳跃将值减半
nothing
end
const_jump = ConstantRateJump(rate, affect!) # 创建常数率跳跃
问题求解
将跳跃耦合到ODE问题并求解:
jump_prob = JumpProblem(prob, Direct(), const_jump)
sol = solve(jump_prob, Tsit5())
plot(sol)
结果将显示函数值随时间线性增长,但会定期发生跳跃使值减半。
构建变率跳跃问题
问题定义
现在考虑跳跃率依赖于当前解值的情况。设跳跃率等于当前解值:
rate(u, p, t) = u[1] # 跳跃率与当前值成正比
var_jump = VariableRateJump(rate, affect!) # 创建变率跳跃
问题求解
jump_prob = JumpProblem(prob, Direct(), var_jump)
sol = solve(jump_prob, Tsit5())
plot(sol)
这种情况下,随着函数值增大,跳跃频率增加;而每次跳跃后值减半,跳跃频率也随之降低。
多跳跃系统
我们可以同时包含多种跳跃类型:
jump_prob = JumpProblem(prob, Direct(), const_jump, var_jump)
sol = solve(jump_prob, Tsit5())
plot(sol)
常数跳跃确保函数在较规律的时间间隔跳跃,而变率跳跃则在函数值较高时增加跳跃频率。
跳跃扩散问题
问题定义
现在考虑完整的跳跃扩散问题,包含确定性漂移、随机扩散和跳跃:
function g(du, u, p, t)
du[1] = u[1] # 乘性噪声
nothing
end
prob = SDEProblem(f, g, [0.2], (0.0, 10.0)) # 定义SDE问题
问题求解
jump_prob = JumpProblem(prob, Direct(), const_jump, var_jump)
sol = solve(jump_prob, SRIW1()) # 使用SDE求解器
plot(sol)
由于扩散项的存在,函数会在零附近随机波动。跳跃行为仍然保持:高频出现在高值区域,且每次跳跃值减半。
性能考虑
- 跳跃类型选择:尽可能使用
ConstantRateJump,它比VariableRateJump计算效率更高 - 求解器选择:对于纯跳跃ODE问题,可以使用常规ODE求解器;对于跳跃扩散问题,需要使用SDE求解器
- 精度控制:当跳跃率轻微依赖于解时,仍可使用
ConstantRateJump,精度损失与跳跃间隔内速率变化百分比相关
总结
JumpProcesses.jl 提供了强大的工具来建模和求解包含跳跃的随机微分方程。通过本教程,我们学习了:
- 如何定义不同类型的跳跃(常数率和变率)
- 如何将跳跃耦合到ODE和SDE问题中
- 如何求解包含单跳跃和多跳跃的系统
- 理解跳跃扩散方程与分段确定性马尔可夫过程的区别
这些技术可以应用于广泛的领域,包括金融建模、生物化学过程、可靠性工程等需要同时考虑连续和离散随机过程的场景。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C059
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
449
3.36 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
704
167
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
164
59
React Native鸿蒙化仓库
JavaScript
279
331
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1