SciML/JumpProcesses.jl 教程:理解跳跃扩散方程与马尔可夫过程
2025-06-04 07:15:03作者:冯梦姬Eddie
前言
在科学计算和工程建模中,我们经常需要处理同时包含连续和离散随机过程的系统。JumpProcesses.jl 作为 SciML 生态系统的重要组成部分,专门用于解决这类混合了确定性微分方程、随机扩散和离散跳跃的复杂问题。本文将带你深入了解如何使用 JumpProcesses.jl 构建和求解跳跃扩散方程和分段确定性马尔可夫过程。
基本概念
什么是跳跃扩散方程?
跳跃扩散方程是包含三种动态的随机微分方程:
- 确定性漂移:由常微分方程描述的系统演化
- 随机扩散:由布朗运动描述的连续随机波动
- 随机跳跃:由泊松过程描述的离散随机事件
数学表达式为:
du = f(u,p,t)dt + \sum_{j}g_j(u,p,t)dW_j(t) + \sum_{i}h_i(u,p,t)dN_i(t)
什么是分段确定性马尔可夫过程?
当方程中不包含扩散项(即所有 g_j = 0)时,我们称其为分段确定性马尔可夫过程(PDMP)。这类过程在系统演化过程中会经历离散的跳跃事件,而在跳跃之间则遵循确定性动力学。
环境准备
在开始前,请确保已安装必要的包:
using Pkg
Pkg.add("DifferentialEquations")
Pkg.add("Plots")
加载包并设置绘图默认参数:
using DifferentialEquations, Plots
default(; lw = 2)
构建常数率跳跃问题
问题定义
考虑一个线性ODE,耦合一个速率为2的泊松计数器。每次跳跃发生时,当前解的值将减半。
首先定义ODE问题:
function f(du, u, p, t)
du[1] = u[1] # 线性增长
nothing
end
prob = ODEProblem(f, [0.2], (0.0, 10.0)) # 初始值0.2,时间范围0-10
跳跃定义
定义常数跳跃率和影响函数:
rate(u, p, t) = 2 # 固定跳跃率2
function affect!(integrator)
integrator.u[1] /= 2 # 每次跳跃将值减半
nothing
end
const_jump = ConstantRateJump(rate, affect!) # 创建常数率跳跃
问题求解
将跳跃耦合到ODE问题并求解:
jump_prob = JumpProblem(prob, Direct(), const_jump)
sol = solve(jump_prob, Tsit5())
plot(sol)
结果将显示函数值随时间线性增长,但会定期发生跳跃使值减半。
构建变率跳跃问题
问题定义
现在考虑跳跃率依赖于当前解值的情况。设跳跃率等于当前解值:
rate(u, p, t) = u[1] # 跳跃率与当前值成正比
var_jump = VariableRateJump(rate, affect!) # 创建变率跳跃
问题求解
jump_prob = JumpProblem(prob, Direct(), var_jump)
sol = solve(jump_prob, Tsit5())
plot(sol)
这种情况下,随着函数值增大,跳跃频率增加;而每次跳跃后值减半,跳跃频率也随之降低。
多跳跃系统
我们可以同时包含多种跳跃类型:
jump_prob = JumpProblem(prob, Direct(), const_jump, var_jump)
sol = solve(jump_prob, Tsit5())
plot(sol)
常数跳跃确保函数在较规律的时间间隔跳跃,而变率跳跃则在函数值较高时增加跳跃频率。
跳跃扩散问题
问题定义
现在考虑完整的跳跃扩散问题,包含确定性漂移、随机扩散和跳跃:
function g(du, u, p, t)
du[1] = u[1] # 乘性噪声
nothing
end
prob = SDEProblem(f, g, [0.2], (0.0, 10.0)) # 定义SDE问题
问题求解
jump_prob = JumpProblem(prob, Direct(), const_jump, var_jump)
sol = solve(jump_prob, SRIW1()) # 使用SDE求解器
plot(sol)
由于扩散项的存在,函数会在零附近随机波动。跳跃行为仍然保持:高频出现在高值区域,且每次跳跃值减半。
性能考虑
- 跳跃类型选择:尽可能使用
ConstantRateJump,它比VariableRateJump计算效率更高 - 求解器选择:对于纯跳跃ODE问题,可以使用常规ODE求解器;对于跳跃扩散问题,需要使用SDE求解器
- 精度控制:当跳跃率轻微依赖于解时,仍可使用
ConstantRateJump,精度损失与跳跃间隔内速率变化百分比相关
总结
JumpProcesses.jl 提供了强大的工具来建模和求解包含跳跃的随机微分方程。通过本教程,我们学习了:
- 如何定义不同类型的跳跃(常数率和变率)
- 如何将跳跃耦合到ODE和SDE问题中
- 如何求解包含单跳跃和多跳跃的系统
- 理解跳跃扩散方程与分段确定性马尔可夫过程的区别
这些技术可以应用于广泛的领域,包括金融建模、生物化学过程、可靠性工程等需要同时考虑连续和离散随机过程的场景。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
265
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868