SciML/JumpProcesses.jl 教程:理解跳跃扩散方程与马尔可夫过程
2025-06-04 13:47:35作者:冯梦姬Eddie
前言
在科学计算和工程建模中,我们经常需要处理同时包含连续和离散随机过程的系统。JumpProcesses.jl 作为 SciML 生态系统的重要组成部分,专门用于解决这类混合了确定性微分方程、随机扩散和离散跳跃的复杂问题。本文将带你深入了解如何使用 JumpProcesses.jl 构建和求解跳跃扩散方程和分段确定性马尔可夫过程。
基本概念
什么是跳跃扩散方程?
跳跃扩散方程是包含三种动态的随机微分方程:
- 确定性漂移:由常微分方程描述的系统演化
- 随机扩散:由布朗运动描述的连续随机波动
- 随机跳跃:由泊松过程描述的离散随机事件
数学表达式为:
du = f(u,p,t)dt + \sum_{j}g_j(u,p,t)dW_j(t) + \sum_{i}h_i(u,p,t)dN_i(t)
什么是分段确定性马尔可夫过程?
当方程中不包含扩散项(即所有 g_j = 0)时,我们称其为分段确定性马尔可夫过程(PDMP)。这类过程在系统演化过程中会经历离散的跳跃事件,而在跳跃之间则遵循确定性动力学。
环境准备
在开始前,请确保已安装必要的包:
using Pkg
Pkg.add("DifferentialEquations")
Pkg.add("Plots")
加载包并设置绘图默认参数:
using DifferentialEquations, Plots
default(; lw = 2)
构建常数率跳跃问题
问题定义
考虑一个线性ODE,耦合一个速率为2的泊松计数器。每次跳跃发生时,当前解的值将减半。
首先定义ODE问题:
function f(du, u, p, t)
du[1] = u[1] # 线性增长
nothing
end
prob = ODEProblem(f, [0.2], (0.0, 10.0)) # 初始值0.2,时间范围0-10
跳跃定义
定义常数跳跃率和影响函数:
rate(u, p, t) = 2 # 固定跳跃率2
function affect!(integrator)
integrator.u[1] /= 2 # 每次跳跃将值减半
nothing
end
const_jump = ConstantRateJump(rate, affect!) # 创建常数率跳跃
问题求解
将跳跃耦合到ODE问题并求解:
jump_prob = JumpProblem(prob, Direct(), const_jump)
sol = solve(jump_prob, Tsit5())
plot(sol)
结果将显示函数值随时间线性增长,但会定期发生跳跃使值减半。
构建变率跳跃问题
问题定义
现在考虑跳跃率依赖于当前解值的情况。设跳跃率等于当前解值:
rate(u, p, t) = u[1] # 跳跃率与当前值成正比
var_jump = VariableRateJump(rate, affect!) # 创建变率跳跃
问题求解
jump_prob = JumpProblem(prob, Direct(), var_jump)
sol = solve(jump_prob, Tsit5())
plot(sol)
这种情况下,随着函数值增大,跳跃频率增加;而每次跳跃后值减半,跳跃频率也随之降低。
多跳跃系统
我们可以同时包含多种跳跃类型:
jump_prob = JumpProblem(prob, Direct(), const_jump, var_jump)
sol = solve(jump_prob, Tsit5())
plot(sol)
常数跳跃确保函数在较规律的时间间隔跳跃,而变率跳跃则在函数值较高时增加跳跃频率。
跳跃扩散问题
问题定义
现在考虑完整的跳跃扩散问题,包含确定性漂移、随机扩散和跳跃:
function g(du, u, p, t)
du[1] = u[1] # 乘性噪声
nothing
end
prob = SDEProblem(f, g, [0.2], (0.0, 10.0)) # 定义SDE问题
问题求解
jump_prob = JumpProblem(prob, Direct(), const_jump, var_jump)
sol = solve(jump_prob, SRIW1()) # 使用SDE求解器
plot(sol)
由于扩散项的存在,函数会在零附近随机波动。跳跃行为仍然保持:高频出现在高值区域,且每次跳跃值减半。
性能考虑
- 跳跃类型选择:尽可能使用
ConstantRateJump,它比VariableRateJump计算效率更高 - 求解器选择:对于纯跳跃ODE问题,可以使用常规ODE求解器;对于跳跃扩散问题,需要使用SDE求解器
- 精度控制:当跳跃率轻微依赖于解时,仍可使用
ConstantRateJump,精度损失与跳跃间隔内速率变化百分比相关
总结
JumpProcesses.jl 提供了强大的工具来建模和求解包含跳跃的随机微分方程。通过本教程,我们学习了:
- 如何定义不同类型的跳跃(常数率和变率)
- 如何将跳跃耦合到ODE和SDE问题中
- 如何求解包含单跳跃和多跳跃的系统
- 理解跳跃扩散方程与分段确定性马尔可夫过程的区别
这些技术可以应用于广泛的领域,包括金融建模、生物化学过程、可靠性工程等需要同时考虑连续和离散随机过程的场景。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355