Longhorn项目网络配置问题排查与解决方案
问题背景
在Kubernetes集群中部署Longhorn存储系统时,可能会遇到网络连接问题导致Longhorn-manager组件无法正常工作。典型表现为Longhorn-manager Pod处于CrashLoopBackOff状态,日志中显示"Failed to call webhook: connect: network is unreachable"错误。
问题现象
当在无互联网访问的环境中部署Longhorn时,Longhorn-manager Pod会不断重启,查看日志可发现以下关键错误信息:
Error starting manager: upgrade API version failed: cannot create CRDAPIVersionSetting: Internal error occurred: failed calling webhook "validator.longhorn.io": failed to call webhook: Post "https://longhorn-admission-webhook.longhorn-system.svc:9502/v1/webhook/validation?timeout=10s": dial tcp 10.111.85.179:9502: connect: network is unreachable
问题分析
-
DNS解析验证:通过创建测试Pod执行nslookup命令,确认DNS解析功能正常,能够正确解析Longhorn服务的内部域名。
-
网络连通性测试:使用netcat工具测试发现,虽然DNS解析成功,但无法建立到Longhorn-admission-webhook服务端口的TCP连接。
-
网络配置检查:深入排查发现,问题根源在于节点网络路由配置异常。在测试环境中,默认路由(0.0.0.0/0)被删除或指向了错误的网关地址,导致集群内部网络通信异常。
解决方案
-
恢复默认路由配置:确保节点上存在正确的默认路由配置,通常应指向集群内部网络的网关地址。
-
验证网络连通性:在修复路由配置后,应执行以下验证步骤:
- 确认节点间网络连通性
- 验证Pod间网络通信
- 测试服务域名解析和端口可达性
-
特殊环境处理:对于需要严格隔离的生产环境,应确保:
- 内部网络路由配置完整
- 必要的服务端口开放
- 网络策略不会阻断Longhorn组件间的通信
经验总结
-
Longhorn作为分布式存储系统,对底层网络环境有较高要求,部署前应充分验证网络配置。
-
在无外网访问的环境中部署时,除了准备必要的容器镜像外,还需确保内部网络通信正常。
-
网络问题排查应从底层开始,依次验证:
- 物理网络连通性
- 节点路由表配置
- 服务发现(DNS)功能
- 服务端口可达性
-
对于复杂的网络环境,建议先在小型测试集群验证部署方案,再推广到生产环境。
通过系统性地排查和解决网络配置问题,可以确保Longhorn在各类环境中稳定运行,为Kubernetes集群提供可靠的持久化存储服务。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00