Longhorn项目网络配置问题排查与解决方案
问题背景
在Kubernetes集群中部署Longhorn存储系统时,可能会遇到网络连接问题导致Longhorn-manager组件无法正常工作。典型表现为Longhorn-manager Pod处于CrashLoopBackOff状态,日志中显示"Failed to call webhook: connect: network is unreachable"错误。
问题现象
当在无互联网访问的环境中部署Longhorn时,Longhorn-manager Pod会不断重启,查看日志可发现以下关键错误信息:
Error starting manager: upgrade API version failed: cannot create CRDAPIVersionSetting: Internal error occurred: failed calling webhook "validator.longhorn.io": failed to call webhook: Post "https://longhorn-admission-webhook.longhorn-system.svc:9502/v1/webhook/validation?timeout=10s": dial tcp 10.111.85.179:9502: connect: network is unreachable
问题分析
-
DNS解析验证:通过创建测试Pod执行nslookup命令,确认DNS解析功能正常,能够正确解析Longhorn服务的内部域名。
-
网络连通性测试:使用netcat工具测试发现,虽然DNS解析成功,但无法建立到Longhorn-admission-webhook服务端口的TCP连接。
-
网络配置检查:深入排查发现,问题根源在于节点网络路由配置异常。在测试环境中,默认路由(0.0.0.0/0)被删除或指向了错误的网关地址,导致集群内部网络通信异常。
解决方案
-
恢复默认路由配置:确保节点上存在正确的默认路由配置,通常应指向集群内部网络的网关地址。
-
验证网络连通性:在修复路由配置后,应执行以下验证步骤:
- 确认节点间网络连通性
- 验证Pod间网络通信
- 测试服务域名解析和端口可达性
-
特殊环境处理:对于需要严格隔离的生产环境,应确保:
- 内部网络路由配置完整
- 必要的服务端口开放
- 网络策略不会阻断Longhorn组件间的通信
经验总结
-
Longhorn作为分布式存储系统,对底层网络环境有较高要求,部署前应充分验证网络配置。
-
在无外网访问的环境中部署时,除了准备必要的容器镜像外,还需确保内部网络通信正常。
-
网络问题排查应从底层开始,依次验证:
- 物理网络连通性
- 节点路由表配置
- 服务发现(DNS)功能
- 服务端口可达性
-
对于复杂的网络环境,建议先在小型测试集群验证部署方案,再推广到生产环境。
通过系统性地排查和解决网络配置问题,可以确保Longhorn在各类环境中稳定运行,为Kubernetes集群提供可靠的持久化存储服务。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00