PHP版本的Whisper自动语音识别库使用教程
2025-04-21 01:51:28作者:虞亚竹Luna
1. 项目介绍
Whisper.php 是一个基于 Whisper.cpp 的 PHP 绑定库,它为开发者提供了高性能的自动语音识别和转录功能。这个库通过FFI(Foreign Function Interface)扩展与 Whisper.cpp 相交互,支持多种平台,包括 Linux、macOS 和 Windows。Whisper.php 提供了高低级API,支持自动下载模型,处理多种音频格式,并以多种格式输出结果。
2. 项目快速启动
在开始使用 Whisper.php 前,确保你的环境满足以下要求:
- PHP 8.1 或以上版本
- FFI 扩展已启用
首先,使用 Composer 安装库:
composer require codewithkyrian/whisper.php
然后,在你的 PHP 配置文件 php.ini 中启用 FFI 扩展:
extension=ffi
低级API快速启动示例
// 初始化上下文和状态
$contextParams = WhisperContextParameters::default();
$ctx = new WhisperContext("path/to/model.bin", $contextParams);
$state = $ctx->createState();
$fullParams = WhisperFullParams::default()->withNThreads(4)->withLanguage('en');
// 读取音频文件并进行转录
$pcm = readAudio($audioPath);
$state->full($pcm, $fullParams);
// 处理转录的分段
$numSegments = $state->nSegments();
for ($i = 0; $i < $numSegments; $i++) {
$segment = $state->getSegmentText($i);
$startTimestamp = $state->getSegmentStartTime($i);
$endTimestamp = $state->getSegmentEndTime($i);
printf("[%s - %s]: %s\n", toTimestamp($startTimestamp), toTimestamp($endTimestamp), $segment);
}
高级API快速启动示例
// 加载预训练模型
$whisper = Whisper::fromPretrained('tiny.en', baseDir: __DIR__ . '/models');
// 读取音频文件
$audio = readAudio(__DIR__ . '/sounds/sample.wav');
// 进行转录
$segments = $whisper->transcribe($audio, 4);
// 输出转录结果
foreach ($segments as $segment) {
echo toTimestamp($segment->startTimestamp) . ': ' . $segment->text . "\n";
}
3. 应用案例和最佳实践
应用案例
- 实时语音转文字:在直播或会议中,实时将演讲者的语音转换为文字。
- 录音文件转录:将录音文件转录为文本,用于存档或搜索。
最佳实践
- 使用适当的模型:根据音频的质量和语言选择合适的模型。
- 调整线程数:根据服务器的CPU核心数调整线程数以提高性能。
- 实现回调函数:使用回调函数处理每个转录分段,以便实时处理数据。
4. 典型生态项目
- Whisper.cpp:Whisper.php 库依赖的 C++ 原生库。
- FFI扩展:PHP的FFI扩展,使得PHP可以调用其他语言编写的函数和对象。
- libsndfile 和 libsamplerate:用于音频文件的读取和重采样。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
220
88
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
281
315
React Native鸿蒙化仓库
JavaScript
286
335
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
436
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19