OpenJ9项目中虚拟线程与原始监视器的交互问题分析
在OpenJ9项目的最新开发过程中,我们发现了一个关于虚拟线程(Virtual Thread)与原始监视器(Raw Monitor)交互的重要技术问题。这个问题出现在JDK24版本中,当启用YieldPinnedVirtualThreads特性(JEP491)时,会导致服务性测试RawMonitorTest失败。
问题背景
虚拟线程是Java平台引入的轻量级线程实现,而原始监视器是JVMTI(Java虚拟机工具接口)提供的一种同步机制。在OpenJ9的实现中,我们发现当前使用J9VMThread->ownedMonitorCount来同时跟踪对象监视器和原始监视器的所有权。
问题本质
问题的核心在于OpenJ9与参考实现(RI)在处理虚拟线程持有原始监视器时的行为差异。参考实现会固定(pin)持有原始监视器的虚拟线程,防止其被卸载(unmount)和重新装载(remount)。而OpenJ9当前实现允许虚拟线程在持有原始监视器时被卸载和重新装载,这导致了J9ThreadMonitor->owner指针变得无效,因为虚拟线程的J9Thread结构可能在卸载/重新装载过程中发生变化。
技术细节
更深入地说,当前OpenJ9实现存在以下技术限制:
- 缺乏有效机制来跟踪虚拟线程拥有的原始监视器
- 在虚拟线程卸载/重新装载过程中无法可靠更新J9ThreadMonitor->owner指针
- 这会导致JVMTI函数返回错误,如JVMTI_ERROR_NOT_MONITOR_OWNER(51)和JVMTI_ERROR_WRONG_PHASE(112)
解决方案
为了与参考实现保持一致,我们需要修改OpenJ9的行为,使其在虚拟线程持有原始监视器时固定该线程。这可以通过两种方式实现:
- 重用现有的J9VMThread->callOutCount计数器(原本用于本地调用)
- 引入专门用于原始监视器的新计数器
经过技术评估,第一种方案更为合理,因为它:
- 减少了内存开销
- 保持了代码的简洁性
- 利用了现有的线程固定机制
实现影响
这一改动将影响以下方面:
- 虚拟线程的调度行为:持有原始监视器的虚拟线程将不再被卸载
- 性能影响:固定线程可能轻微降低虚拟线程的吞吐量
- 兼容性:更好地与参考实现保持一致
总结
通过对OpenJ9中虚拟线程与原始监视器交互问题的分析,我们理解了参考实现与OpenJ9实现之间的关键差异。采用固定持有原始监视器的虚拟线程策略,不仅解决了测试失败问题,还提高了与标准实现的一致性。这一改进已经通过多个Pull Request实现,并重新启用了相关测试用例。
这个案例展示了在实现新Java特性时,保持与参考实现行为一致的重要性,特别是在涉及线程同步和JVMTI交互等复杂场景下。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00