OpenJ9项目中虚拟线程与原始监视器的交互问题分析
在OpenJ9项目的最新开发过程中,我们发现了一个关于虚拟线程(Virtual Thread)与原始监视器(Raw Monitor)交互的重要技术问题。这个问题出现在JDK24版本中,当启用YieldPinnedVirtualThreads特性(JEP491)时,会导致服务性测试RawMonitorTest失败。
问题背景
虚拟线程是Java平台引入的轻量级线程实现,而原始监视器是JVMTI(Java虚拟机工具接口)提供的一种同步机制。在OpenJ9的实现中,我们发现当前使用J9VMThread->ownedMonitorCount来同时跟踪对象监视器和原始监视器的所有权。
问题本质
问题的核心在于OpenJ9与参考实现(RI)在处理虚拟线程持有原始监视器时的行为差异。参考实现会固定(pin)持有原始监视器的虚拟线程,防止其被卸载(unmount)和重新装载(remount)。而OpenJ9当前实现允许虚拟线程在持有原始监视器时被卸载和重新装载,这导致了J9ThreadMonitor->owner指针变得无效,因为虚拟线程的J9Thread结构可能在卸载/重新装载过程中发生变化。
技术细节
更深入地说,当前OpenJ9实现存在以下技术限制:
- 缺乏有效机制来跟踪虚拟线程拥有的原始监视器
- 在虚拟线程卸载/重新装载过程中无法可靠更新J9ThreadMonitor->owner指针
- 这会导致JVMTI函数返回错误,如JVMTI_ERROR_NOT_MONITOR_OWNER(51)和JVMTI_ERROR_WRONG_PHASE(112)
解决方案
为了与参考实现保持一致,我们需要修改OpenJ9的行为,使其在虚拟线程持有原始监视器时固定该线程。这可以通过两种方式实现:
- 重用现有的J9VMThread->callOutCount计数器(原本用于本地调用)
- 引入专门用于原始监视器的新计数器
经过技术评估,第一种方案更为合理,因为它:
- 减少了内存开销
- 保持了代码的简洁性
- 利用了现有的线程固定机制
实现影响
这一改动将影响以下方面:
- 虚拟线程的调度行为:持有原始监视器的虚拟线程将不再被卸载
- 性能影响:固定线程可能轻微降低虚拟线程的吞吐量
- 兼容性:更好地与参考实现保持一致
总结
通过对OpenJ9中虚拟线程与原始监视器交互问题的分析,我们理解了参考实现与OpenJ9实现之间的关键差异。采用固定持有原始监视器的虚拟线程策略,不仅解决了测试失败问题,还提高了与标准实现的一致性。这一改进已经通过多个Pull Request实现,并重新启用了相关测试用例。
这个案例展示了在实现新Java特性时,保持与参考实现行为一致的重要性,特别是在涉及线程同步和JVMTI交互等复杂场景下。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00