【亲测免费】 KMeans-SMOTE 开源项目教程
2026-01-19 10:58:02作者:郁楠烈Hubert
项目介绍
KMeans-SMOTE 是一个用于不平衡学习的过采样工具,结合了 K-Means 聚类和 SMOTE(Synthetic Minority Over-sampling Technique)算法。该项目旨在通过生成合成样本来平衡数据集,特别适用于处理类别不平衡问题。KMeans-SMOTE 通过先进行 K-Means 聚类,然后在每个聚类中应用 SMOTE 算法来生成新的样本,从而提高分类性能。
项目快速启动
安装
首先,确保你已经安装了 Python 3.6 或更高版本。然后,使用 pip 安装 KMeans-SMOTE:
pip install kmeans-smote
示例代码
以下是一个简单的示例,展示如何使用 KMeans-SMOTE 进行数据过采样:
from kmeans_smote import KMeansSMOTE
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
# 生成一个不平衡的数据集
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
n_informative=3, n_redundant=1, flip_y=0,
n_features=20, n_clusters_per_class=1,
n_samples=1000, random_state=10)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
# 初始化 KMeansSMOTE
kmeans_smote = KMeansSMOTE(k_neighbors=2, random_state=42)
# 进行过采样
X_resampled, y_resampled = kmeans_smote.fit_resample(X_train, y_train)
print("原始训练集大小:", X_train.shape, y_train.shape)
print("过采样后的训练集大小:", X_resampled.shape, y_resampled.shape)
应用案例和最佳实践
应用案例
KMeans-SMOTE 特别适用于以下场景:
- 金融欺诈检测:在金融领域,欺诈交易通常是少数类别,KMeans-SMOTE 可以帮助平衡数据集,提高欺诈检测的准确性。
- 医疗诊断:在医疗数据分析中,某些疾病可能非常罕见,使用 KMeans-SMOTE 可以生成更多的合成样本,帮助模型更好地学习这些罕见病例。
最佳实践
- 参数调整:根据具体的数据集特性,调整 KMeans 的聚类数和 SMOTE 的邻居数,以达到最佳的过采样效果。
- 结合其他方法:可以结合其他过采样或欠采样方法,如 SMOTEENN 或 SMOTETomek,以进一步提高模型性能。
典型生态项目
KMeans-SMOTE 可以与以下开源项目结合使用,以构建更强大的机器学习解决方案:
- Scikit-learn:用于构建和评估机器学习模型。
- Imbalanced-learn:提供多种处理不平衡数据集的方法,可以与 KMeans-SMOTE 结合使用。
- Pandas:用于数据处理和分析。
通过结合这些工具,可以构建一个完整的数据处理和模型训练流程,有效解决类别不平衡问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355