【亲测免费】 KMeans-SMOTE 开源项目教程
2026-01-19 10:58:02作者:郁楠烈Hubert
项目介绍
KMeans-SMOTE 是一个用于不平衡学习的过采样工具,结合了 K-Means 聚类和 SMOTE(Synthetic Minority Over-sampling Technique)算法。该项目旨在通过生成合成样本来平衡数据集,特别适用于处理类别不平衡问题。KMeans-SMOTE 通过先进行 K-Means 聚类,然后在每个聚类中应用 SMOTE 算法来生成新的样本,从而提高分类性能。
项目快速启动
安装
首先,确保你已经安装了 Python 3.6 或更高版本。然后,使用 pip 安装 KMeans-SMOTE:
pip install kmeans-smote
示例代码
以下是一个简单的示例,展示如何使用 KMeans-SMOTE 进行数据过采样:
from kmeans_smote import KMeansSMOTE
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
# 生成一个不平衡的数据集
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
n_informative=3, n_redundant=1, flip_y=0,
n_features=20, n_clusters_per_class=1,
n_samples=1000, random_state=10)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
# 初始化 KMeansSMOTE
kmeans_smote = KMeansSMOTE(k_neighbors=2, random_state=42)
# 进行过采样
X_resampled, y_resampled = kmeans_smote.fit_resample(X_train, y_train)
print("原始训练集大小:", X_train.shape, y_train.shape)
print("过采样后的训练集大小:", X_resampled.shape, y_resampled.shape)
应用案例和最佳实践
应用案例
KMeans-SMOTE 特别适用于以下场景:
- 金融欺诈检测:在金融领域,欺诈交易通常是少数类别,KMeans-SMOTE 可以帮助平衡数据集,提高欺诈检测的准确性。
- 医疗诊断:在医疗数据分析中,某些疾病可能非常罕见,使用 KMeans-SMOTE 可以生成更多的合成样本,帮助模型更好地学习这些罕见病例。
最佳实践
- 参数调整:根据具体的数据集特性,调整 KMeans 的聚类数和 SMOTE 的邻居数,以达到最佳的过采样效果。
- 结合其他方法:可以结合其他过采样或欠采样方法,如 SMOTEENN 或 SMOTETomek,以进一步提高模型性能。
典型生态项目
KMeans-SMOTE 可以与以下开源项目结合使用,以构建更强大的机器学习解决方案:
- Scikit-learn:用于构建和评估机器学习模型。
- Imbalanced-learn:提供多种处理不平衡数据集的方法,可以与 KMeans-SMOTE 结合使用。
- Pandas:用于数据处理和分析。
通过结合这些工具,可以构建一个完整的数据处理和模型训练流程,有效解决类别不平衡问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882