UnbalancedDataset项目中SMOTE在Pipeline预测阶段的行为解析
2025-06-01 21:38:44作者:侯霆垣
概述
在机器学习实践中,处理类别不平衡数据是一个常见挑战。UnbalancedDataset项目提供了多种解决方案,其中SMOTE(合成少数类过采样技术)是最常用的方法之一。本文将深入探讨SMOTE在Pipeline中的行为机制,特别是在预测阶段的工作原理。
SMOTE的基本原理
SMOTE是一种通过合成新样本来解决类别不平衡问题的算法。其核心思想是在少数类样本之间进行插值,生成新的合成样本,从而平衡数据集。在训练阶段,SMOTE会执行以下操作:
- 对少数类样本进行分析
- 在特征空间中找到k近邻
- 在这些近邻之间随机插值生成新样本
Pipeline中的SMOTE行为
当SMOTE被集成到Pipeline中时,其行为具有以下特点:
训练阶段
在Pipeline的fit阶段,SMOTE会正常执行其过采样功能。具体流程为:
- Pipeline依次调用每个步骤的fit或fit_resample方法
- 当遇到SMOTE时,会调用其fit_resample方法
- 生成平衡后的数据集传递给后续步骤
预测阶段
预测阶段的行为是许多开发者容易困惑的地方。关键点在于:
- SMOTE不会在预测阶段执行任何操作
- Pipeline通过_iter方法的filter_resample参数自动过滤掉所有具有fit_resample方法的步骤
- 预测数据直接绕过SMOTE等重采样器,仅经过转换器处理
技术实现细节
UnbalancedDataset项目通过以下机制实现这一行为:
def _iter(self, with_final=True, filter_passthrough=True, filter_resample=True):
"""生成(idx, (name, trans))元组的迭代器
参数filter_resample控制是否过滤具有fit_resample方法的步骤
"""
it = super()._iter(with_final, filter_passthrough)
if filter_resample:
return filter(lambda x: not hasattr(x[-1], "fit_resample"), it)
else:
return it
这一设计确保了:
- 训练时能正确应用重采样
- 预测时跳过重采样步骤
- 保持Pipeline接口的一致性
实际应用建议
在实际项目中,开发者应注意:
- 重采样只应用于训练数据,测试数据应保持原始分布
- 交叉验证时需要在每个fold内部应用重采样,避免数据泄露
- 评估指标应选择适合不平衡数据的指标,如F1-score、AUC-ROC等
总结
UnbalancedDataset项目通过巧妙的Pipeline设计,实现了SMOTE等重采样方法在训练和预测阶段的不同行为。这种设计既保证了训练时的数据平衡效果,又确保了预测时的数据真实性,是处理类别不平衡问题的有效解决方案。理解这一机制有助于开发者更合理地构建机器学习流程,避免常见的使用误区。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134