HDR-Plenoxels 项目使用教程
2024-09-27 21:17:18作者:伍霜盼Ellen
1. 项目目录结构及介绍
HDR-Plenoxels/
├── build/
│ ├── opt/
│ │ ├── hdr_opt.py
│ │ ├── shell/
│ │ │ ├── syn/
│ │ │ │ ├── train_mid.sh
│ │ │ │ ├── train_mix.sh
│ │ │ │ ├── train_tone.sh
│ │ │ ├── real/
│ │ │ │ ├── train_mid.sh
│ │ │ │ ├── train_mix.sh
│ │ │ │ ├── train_tone.sh
│ │ ├── render/
│ │ │ ├── render_hdr.sh
│ │ │ ├── render_ldr.sh
│ │ ├── hdr_calc_metrics.py
├── svox2/
│ ├── __init__.py
│ ├── ... (其他相关文件)
├── test/
│ ├── ... (测试相关文件)
├── LICENSE
├── README.md
├── environment.yml
├── manual_install.sh
├── setup.py
目录结构说明
build/: 包含项目的构建和优化相关文件。opt/: 包含训练和渲染的脚本。hdr_opt.py: 训练单个场景的主要脚本。shell/: 包含用于训练和渲染的Shell脚本。syn/: 包含用于合成数据集的训练脚本。real/: 包含用于真实数据集的训练脚本。
render/: 包含用于渲染HDR和LDR辐射场的脚本。hdr_calc_metrics.py: 用于计算评估指标的脚本。
svox2/: 包含项目的主要代码库,包括CUDA扩展和其他相关文件。test/: 包含项目的测试文件。LICENSE: 项目的许可证文件。README.md: 项目的介绍和使用说明。environment.yml: 用于创建虚拟环境的配置文件。manual_install.sh: 手动安装脚本。setup.py: 项目的安装脚本。
2. 项目的启动文件介绍
hdr_opt.py
hdr_opt.py 是项目的主要启动文件,用于训练单个场景的HDR辐射场。该脚本位于 build/opt/ 目录下。
使用方法
python hdr_opt.py --config path/to/config.yaml
其他启动脚本
train_mid.sh,train_mix.sh,train_tone.sh: 这些脚本位于build/opt/shell/syn/和build/opt/shell/real/目录下,分别用于训练不同类型的数据集。
3. 项目的配置文件介绍
environment.yml
environment.yml 是用于创建虚拟环境的配置文件。通过该文件,可以快速创建一个包含所有依赖项的虚拟环境。
使用方法
conda env create -f environment.yml
conda activate plenoxel
setup.py
setup.py 是项目的安装脚本,用于安装项目的主要库和依赖项。
使用方法
pip install .
manual_install.sh
manual_install.sh 是一个手动安装脚本,用于在CUDA工具包较旧的情况下安装CUB库。
使用方法
./manual_install.sh
通过以上步骤,您可以顺利地启动和配置HDR-Plenoxels项目,并开始进行HDR辐射场的训练和渲染。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
630
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210