SVOX2 开源项目使用教程
2024-09-16 05:04:58作者:段琳惟
1. 项目介绍
SVOX2 是一个基于深度学习的开源语音合成系统,由开发者 sxyu 创建并维护。该项目的目标是提供高质量、自然度高的合成语音,让机器的声音更加接近人类,从而提升人机交互体验。SVOX2 的核心技术是利用先进的神经网络架构——Tacotron2 和 WaveRNN。Tacotron2 负责将文本转化为声谱图,WaveRNN 将这些声谱图转换为连续的波形,生成可听的音频。
2. 项目快速启动
环境配置
首先,创建虚拟环境并激活:
conda env create -f environment.yml
conda activate plenoxel
克隆项目并安装
克隆 SVOX2 项目并安装:
git clone https://github.com/sxyu/svox2.git
cd svox2
pip install -e . --verbose
获取数据集
下载 NeRF-synthetic 和 LLFF 数据集:
# 下载 NeRF-synthetic 数据集
wget https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1 -O nerf_synthetic.zip
# 下载 LLFF 数据集
wget https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1 -O nerf_llff_data.zip
训练模型
使用以下命令启动训练:
cd opt
./launch.sh <exp_name> <GPU_id> <data_dir> -c <config>
例如,使用 NeRF-synthetic 数据集进行训练:
./launch.sh my_experiment 0 /path/to/nerf_synthetic -c configs/syn.json
评估模型
使用以下命令进行模型评估:
python render_imgs.py <CHECKPOINT.npz> <data_dir>
3. 应用案例和最佳实践
智能助手与聊天机器人
SVOX2 的高质量语音合成能力使得 AI 语音助手的交互体验更为真实,提高用户满意度。
有声读物与电子书
自动将文字内容转化成语音,方便视力障碍者或忙碌的读者听取内容。
教育与培训
自动生成教学语音,降低制作多媒体教学资源的成本。
车载导航与物联网设备
提供清晰、准确的语音提示,增强用户体验。
4. 典型生态项目
ARF-svox2
ARF-svox2 是一个基于 SVOX2 的艺术性辐射场项目,能够生成具有艺术风格的语音合成。项目地址:ARF-svox2
Plenoxels
Plenoxels 是一个基于 SVOX2 的辐射场项目,能够在没有神经网络的情况下生成高质量的辐射场。项目地址:Plenoxels
通过以上步骤,您可以快速上手并使用 SVOX2 进行语音合成任务。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C061
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
451
3.36 K
Ascend Extension for PyTorch
Python
254
287
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
832
407
暂无简介
Dart
705
167
React Native鸿蒙化仓库
JavaScript
279
331
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
162
59
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19