开源项目实战指南:DL-Traff-Graph深度学习城市交通预测
项目介绍
DL-Traff-Graph 是一个专注于城市交通预测的开源资源项目,它为基于网格和图的模型提供了一个全面的基准测试平台。本项目特别强调图神经网络在交通预测中的应用,属于 [CIKM 2021] 的资源论文之一,被评选为最佳资源论文亚军。研究团队调查并基准化了多种深度学习模型,并确保所有模型在统一的数据处理、相同的超参数以及一致的计算环境下运行(例如,PyTorch 1.6及其相应的CUDA版本),以公正地反映各模型在相似条件下的性能。
项目快速启动
要快速启动 DL-Traff-Graph,请遵循以下步骤:
环境准备
首先,确保你的开发环境满足以下要求:
- 操作系统:Ubuntu 20.04.2 LTS 或更高版本。
- Python:3.6及以上版本,推荐使用Anaconda进行管理。
- 必要库:PyTorch >= 1.6.0,
torch-summary
版本需正确安装(注意可能存在的版本兼容性问题)以及其他相关库如tables
,pandas
,scipy
,scikit-learn
等。
可以通过以下命令克隆项目仓库:
git clone https://github.com/deepkashiwa20/DL-Traff-Graph.git
安装必要的依赖项,注意处理torch-summary
的潜在问题:
pip uninstall torch-summary
pip install torch-summary
运行示例
以METR-LA数据集上的STGCN模型为例:
- 进入相应的工作目录:
cd DL-Traff-Graph/workMETRLA
- 根据GPU卡号调试或运行模型(这里假设你有一个可用的GPU卡号1):
- 调试模式:
python STGCN.py 1
- 训练、预测和测试:
python pred_STGCN3.py 1
- 调试模式:
- 查看结果:
结束运行后,结果将保存在
save
目录下对应的时间戳文件夹内,比如:cd ../save/pred_METR-LA_STGCN_2106160000
应用案例和最佳实践
对于最佳实践,开发者应该利用项目提供的模型框架进行细致的调参,比如修改parameter.py
及特定模型参数文件来适应不同的数据特性。重要的是理解每个模型的输入输出要求,以及如何调整网络结构以优化特定场景下的交通预测精度。此外,分析不同模型在城市交通流量预测中的优势与局限,选择最适合目标应用场景的模型或对其进行融合策略设计。
典型生态项目
虽然直接从 DL-Traff-Graph 的描述中未直接提及典型的生态系统项目,但该项目本身便是图神经网络与交通领域深度学习应用的一个典范。研究人员和开发者可以从这个项目出发,探索更多类似DL-Traff-Grid(图中提及的另一个项目,专注于基于网格的模型)这样的扩展,或是自己创建新的模型和解决方案,构建更加丰富的城市交通智能管理系统。
通过参与社区,贡献代码或实验结果,用户能够共同促进这一领域的发展,实现更高效的交通流预测和城市管理技术。
本指南旨在帮助初学者和专业开发者迅速进入状态,利用 DL-Traff-Graph 这一强大的工具进行交通预测。深入了解项目细节和进行定制化的开发将进一步提升你的应用能力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









