开源项目实战指南:DL-Traff-Graph深度学习城市交通预测
项目介绍
DL-Traff-Graph 是一个专注于城市交通预测的开源资源项目,它为基于网格和图的模型提供了一个全面的基准测试平台。本项目特别强调图神经网络在交通预测中的应用,属于 [CIKM 2021] 的资源论文之一,被评选为最佳资源论文亚军。研究团队调查并基准化了多种深度学习模型,并确保所有模型在统一的数据处理、相同的超参数以及一致的计算环境下运行(例如,PyTorch 1.6及其相应的CUDA版本),以公正地反映各模型在相似条件下的性能。
项目快速启动
要快速启动 DL-Traff-Graph,请遵循以下步骤:
环境准备
首先,确保你的开发环境满足以下要求:
- 操作系统:Ubuntu 20.04.2 LTS 或更高版本。
- Python:3.6及以上版本,推荐使用Anaconda进行管理。
- 必要库:PyTorch >= 1.6.0,
torch-summary版本需正确安装(注意可能存在的版本兼容性问题)以及其他相关库如tables,pandas,scipy,scikit-learn等。
可以通过以下命令克隆项目仓库:
git clone https://github.com/deepkashiwa20/DL-Traff-Graph.git
安装必要的依赖项,注意处理torch-summary的潜在问题:
pip uninstall torch-summary
pip install torch-summary
运行示例
以METR-LA数据集上的STGCN模型为例:
- 进入相应的工作目录:
cd DL-Traff-Graph/workMETRLA - 根据GPU卡号调试或运行模型(这里假设你有一个可用的GPU卡号1):
- 调试模式:
python STGCN.py 1 - 训练、预测和测试:
python pred_STGCN3.py 1
- 调试模式:
- 查看结果:
结束运行后,结果将保存在
save目录下对应的时间戳文件夹内,比如:cd ../save/pred_METR-LA_STGCN_2106160000
应用案例和最佳实践
对于最佳实践,开发者应该利用项目提供的模型框架进行细致的调参,比如修改parameter.py及特定模型参数文件来适应不同的数据特性。重要的是理解每个模型的输入输出要求,以及如何调整网络结构以优化特定场景下的交通预测精度。此外,分析不同模型在城市交通流量预测中的优势与局限,选择最适合目标应用场景的模型或对其进行融合策略设计。
典型生态项目
虽然直接从 DL-Traff-Graph 的描述中未直接提及典型的生态系统项目,但该项目本身便是图神经网络与交通领域深度学习应用的一个典范。研究人员和开发者可以从这个项目出发,探索更多类似DL-Traff-Grid(图中提及的另一个项目,专注于基于网格的模型)这样的扩展,或是自己创建新的模型和解决方案,构建更加丰富的城市交通智能管理系统。
通过参与社区,贡献代码或实验结果,用户能够共同促进这一领域的发展,实现更高效的交通流预测和城市管理技术。
本指南旨在帮助初学者和专业开发者迅速进入状态,利用 DL-Traff-Graph 这一强大的工具进行交通预测。深入了解项目细节和进行定制化的开发将进一步提升你的应用能力。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00