开源项目实战指南:DL-Traff-Graph深度学习城市交通预测
项目介绍
DL-Traff-Graph 是一个专注于城市交通预测的开源资源项目,它为基于网格和图的模型提供了一个全面的基准测试平台。本项目特别强调图神经网络在交通预测中的应用,属于 [CIKM 2021] 的资源论文之一,被评选为最佳资源论文亚军。研究团队调查并基准化了多种深度学习模型,并确保所有模型在统一的数据处理、相同的超参数以及一致的计算环境下运行(例如,PyTorch 1.6及其相应的CUDA版本),以公正地反映各模型在相似条件下的性能。
项目快速启动
要快速启动 DL-Traff-Graph,请遵循以下步骤:
环境准备
首先,确保你的开发环境满足以下要求:
- 操作系统:Ubuntu 20.04.2 LTS 或更高版本。
- Python:3.6及以上版本,推荐使用Anaconda进行管理。
- 必要库:PyTorch >= 1.6.0,
torch-summary
版本需正确安装(注意可能存在的版本兼容性问题)以及其他相关库如tables
,pandas
,scipy
,scikit-learn
等。
可以通过以下命令克隆项目仓库:
git clone https://github.com/deepkashiwa20/DL-Traff-Graph.git
安装必要的依赖项,注意处理torch-summary
的潜在问题:
pip uninstall torch-summary
pip install torch-summary
运行示例
以METR-LA数据集上的STGCN模型为例:
- 进入相应的工作目录:
cd DL-Traff-Graph/workMETRLA
- 根据GPU卡号调试或运行模型(这里假设你有一个可用的GPU卡号1):
- 调试模式:
python STGCN.py 1
- 训练、预测和测试:
python pred_STGCN3.py 1
- 调试模式:
- 查看结果:
结束运行后,结果将保存在
save
目录下对应的时间戳文件夹内,比如:cd ../save/pred_METR-LA_STGCN_2106160000
应用案例和最佳实践
对于最佳实践,开发者应该利用项目提供的模型框架进行细致的调参,比如修改parameter.py
及特定模型参数文件来适应不同的数据特性。重要的是理解每个模型的输入输出要求,以及如何调整网络结构以优化特定场景下的交通预测精度。此外,分析不同模型在城市交通流量预测中的优势与局限,选择最适合目标应用场景的模型或对其进行融合策略设计。
典型生态项目
虽然直接从 DL-Traff-Graph 的描述中未直接提及典型的生态系统项目,但该项目本身便是图神经网络与交通领域深度学习应用的一个典范。研究人员和开发者可以从这个项目出发,探索更多类似DL-Traff-Grid(图中提及的另一个项目,专注于基于网格的模型)这样的扩展,或是自己创建新的模型和解决方案,构建更加丰富的城市交通智能管理系统。
通过参与社区,贡献代码或实验结果,用户能够共同促进这一领域的发展,实现更高效的交通流预测和城市管理技术。
本指南旨在帮助初学者和专业开发者迅速进入状态,利用 DL-Traff-Graph 这一强大的工具进行交通预测。深入了解项目细节和进行定制化的开发将进一步提升你的应用能力。
鸿蒙开发工具大赶集
本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。012hertz
Go 微服务 HTTP 框架,具有高易用性、高性能、高扩展性等特点。Go01每日精选项目
🔥🔥 每日精选已经升级为:【行业动态】,快去首页看看吧,后续都在【首页 - 行业动态】内更新,多条更新哦~🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~029kitex
Go 微服务 RPC 框架,具有高性能、强可扩展的特点。Go00Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie057毕方Talon工具
本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python040PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06mybatis-plus
mybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区018- DDeepSeek-R1探索新一代推理模型,DeepSeek-R1系列以大规模强化学习为基础,实现自主推理,表现卓越,推理行为强大且独特。开源共享,助力研究社区深入探索LLM推理能力,推动行业发展。【此简介由AI生成】Python00
热门内容推荐
最新内容推荐
项目优选









