DL-Traff-Graph:城市交通预测的深度学习模型基准
2024-09-25 04:44:54作者:殷蕙予
项目介绍
DL-Traff-Graph 是一个开源项目,专注于城市交通预测领域的深度学习模型基准测试。该项目是 CIKM 2021 最佳资源论文的亚军作品,旨在为研究人员和开发者提供一个统一的基准平台,用于评估和比较不同深度学习模型在城市交通预测任务中的表现。DL-Traff-Graph 不仅整合了多种图神经网络模型,还包含了传统的时间序列模型和统计方法,确保所有模型在相同的数据处理、超参数设置和计算环境下进行公平比较。
项目技术分析
技术栈
- 编程语言:Python 3 (>= 3.6)
- 深度学习框架:PyTorch (>= 1.6.0)
- 依赖库:torch-summary, tables, pandas, scipy, scikit-learn
- 操作系统:Ubuntu 20.04.2 LTS
核心模型
DL-Traff-Graph 集成了多种先进的深度学习模型,包括但不限于:
- 图神经网络模型:STGCN, DCRNN, GraphWaveNet, ASTGCN, GMAN, MTGNN, AGCRN
- 时间序列模型:LSTNet
- 传统统计方法:HistoricalAverage, CopyLastSteps
这些模型在相同的计算环境和数据处理流程下进行训练和测试,确保结果的可比性和公平性。
项目及技术应用场景
DL-Traff-Graph 适用于以下应用场景:
- 城市交通管理:通过预测交通流量,帮助城市交通管理部门优化交通信号控制,减少拥堵。
- 智能交通系统:为智能交通系统提供实时交通预测,提升系统的智能化水平。
- 物流规划:帮助物流公司优化配送路线,减少运输时间和成本。
- 自动驾驶:为自动驾驶车辆提供准确的交通预测,提升行驶安全性和效率。
项目特点
1. 统一的基准平台
DL-Traff-Graph 提供了一个统一的基准平台,所有模型在相同的数据处理、超参数设置和计算环境下进行测试,确保结果的可比性和公平性。
2. 丰富的模型库
项目集成了多种先进的深度学习模型,包括图神经网络、时间序列模型和传统统计方法,满足不同应用场景的需求。
3. 易于使用的用户指南
项目提供了详细的用户指南,帮助用户快速上手并使用各种模型进行交通预测任务。用户可以通过简单的命令行操作,快速调试和运行模型。
4. 持续更新
项目将持续更新,优化现有模型的性能,并引入更多先进的深度学习模型,确保用户始终能够使用最新的技术和方法。
结语
DL-Traff-Graph 是一个强大的开源项目,为城市交通预测领域的研究人员和开发者提供了一个统一的基准平台。无论你是交通管理专家、智能交通系统开发者,还是对深度学习感兴趣的研究人员,DL-Traff-Graph 都将是你不可或缺的工具。立即访问 DL-Traff-Graph GitHub 仓库,开始你的交通预测之旅吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
323
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
159
179
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
642
252
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
246
87
暂无简介
Dart
610
137
React Native鸿蒙化仓库
JavaScript
239
311
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
472
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
365
3.05 K