DIST:从更强的教师中提取知识,实现高效的知识蒸馏
2024-09-23 14:03:41作者:劳婵绚Shirley
项目介绍
DIST(Knowledge Distillation from A Stronger Teacher)是一个由Tao Huang、Shan You、Fei Wang、Chen Qian和Chang Xu共同开发的创新知识蒸馏方法。该项目在NeurIPS 2022上被正式接受,并提供了官方实现代码。DIST的核心思想是通过从更强的教师模型中提取知识,显著提升学生模型的性能。DIST方法简单且有效,已经在多个任务上取得了优异的成果。
项目技术分析
DIST的核心技术在于其独特的损失函数设计,该损失函数位于classification/lib/models/losses/dist_kd.py。通过这种设计,DIST能够在不同任务中实现高效的知识传递,包括图像分类、目标检测和语义分割等。
关键技术点:
- 损失函数优化:DIST的损失函数经过精心设计,能够在知识蒸馏过程中最大化教师模型对学生模型的指导作用。
- 多任务支持:DIST不仅支持图像分类任务,还扩展到了目标检测和语义分割任务,展示了其广泛的适用性。
- 强教师模型:DIST特别强调从更强的教师模型中提取知识,这使得学生模型能够获得更高的性能提升。
项目及技术应用场景
DIST的应用场景非常广泛,特别是在需要提升模型性能但计算资源有限的情况下。以下是一些典型的应用场景:
- 图像分类:在图像分类任务中,DIST能够显著提升学生模型的准确率,尤其是在教师模型更强大的情况下。
- 目标检测:在目标检测任务中,DIST能够帮助学生模型更好地学习教师模型的检测策略,从而提升检测精度。
- 语义分割:在语义分割任务中,DIST能够帮助学生模型更好地理解图像的语义信息,提升分割效果。
项目特点
DIST项目具有以下显著特点:
- 简单有效:DIST方法设计简单,易于实现,且在多个任务上表现出色。
- 强教师模型支持:DIST特别适合从更强的教师模型中提取知识,这使得学生模型能够获得更高的性能提升。
- 多任务支持:DIST不仅支持图像分类,还扩展到了目标检测和语义分割任务,展示了其广泛的适用性。
- 开源代码:DIST提供了完整的开源代码,用户可以轻松复现结果并进行进一步的优化和扩展。
结语
DIST项目为知识蒸馏领域提供了一个简单且高效的解决方案,特别适合从更强的教师模型中提取知识。无论是在图像分类、目标检测还是语义分割任务中,DIST都能显著提升学生模型的性能。如果你正在寻找一种高效的知识蒸馏方法,DIST绝对值得一试。
立即访问DIST项目仓库,开始你的知识蒸馏之旅吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134