知识蒸馏PyTorch实现教程
2024-09-18 09:02:56作者:郜逊炳
项目介绍
knowledge-distillation-pytorch 是一个用于探索深度和浅层知识蒸馏(Knowledge Distillation, KD)实验的PyTorch实现。知识蒸馏是一种将大型、计算密集型模型的知识转移到小型模型中的技术,从而在不损失有效性的情况下提高小型模型的性能。该项目提供了灵活的实验框架,支持多种知识蒸馏实验,并且可以通过配置文件定义超参数,避免冗长的命令行参数设置。
项目快速启动
安装依赖
首先,克隆项目仓库并安装所需的依赖项:
git clone https://github.com/haitongli/knowledge-distillation-pytorch.git
cd knowledge-distillation-pytorch
pip install -r requirements.txt
训练模型
以下是一个简单的训练示例,使用CIFAR-10数据集进行知识蒸馏实验:
import os
import torch
from train import train
from model import TeacherModel, StudentModel
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 定义教师模型和学生模型
teacher_model = TeacherModel().to(device)
student_model = StudentModel().to(device)
# 定义训练参数
params = {
"model_dir": "experiments/cnn_distill",
"epochs": 10,
"learning_rate": 0.001,
"temperature": 2,
"alpha": 0.5
}
# 开始训练
train(teacher_model, student_model, params, device)
超参数搜索
项目还支持超参数搜索,可以通过以下命令进行:
python search_hyperparams.py --parent_dir experiments/cnn_distill_alpha_temp
应用案例和最佳实践
案例1:从ResNet-18到5层CNN的知识蒸馏
在这个案例中,我们将一个预训练的ResNet-18模型作为教师模型,将其知识蒸馏到一个5层CNN学生模型中。通过这种方式,学生模型可以在保持较小计算成本的同时,获得接近教师模型的性能。
# 训练5层CNN学生模型
python train.py --model_dir experiments/cnn_distill
案例2:从更深模型到ResNet-18的知识蒸馏
在这个案例中,我们将一个更深的模型(如ResNext-29)作为教师模型,将其知识蒸馏到一个ResNet-18学生模型中。通过这种方式,学生模型可以在保持较小计算成本的同时,获得更深的模型的性能。
# 训练ResNet-18学生模型
python train.py --model_dir experiments/resnet18_distill/resnext_teacher
典型生态项目
1. PyTorch官方知识蒸馏教程
PyTorch官方提供了一个详细的知识蒸馏教程,涵盖了从基础到高级的知识蒸馏技术。该教程可以帮助用户更好地理解和应用知识蒸馏技术。
2. 知识蒸馏开源实现
除了knowledge-distillation-pytorch,还有一些其他开源项目也提供了知识蒸馏的实现,如:
- NeelayS/Knowledge-Distillation: 一个简单的知识蒸馏实现,适用于MNIST数据集。
这些项目可以帮助用户在不同的数据集和模型架构上进行知识蒸馏实验,从而更好地理解和应用这一技术。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355