结构化知识蒸馏教程:语义分割与密集预测
1. 项目介绍
本教程基于GitHub上的开源项目结构化知识蒸馏,该仓库提供了CVPR 2019年口头报告论文《用于密集预测的结构化知识蒸馏》的官方实现代码。此项目不仅限于语义分割任务,还扩展到了其他计算机视觉任务中。作者提出了一种结构化知识传输方法,通过pair-wise和pixel-wise的蒸馏策略,增强学生模型的学习能力,提高其在复杂场景下的性能表现。
主要特点包括:
- Pair-wise 和 Pixel-wise Distillation: 强制模型间的一致性。
- 稳定训练的GAN部分更新: 在master分支上可找到更稳定的训练版本。
- 支持多种任务和数据集: 包括语义分割、对象检测、深度估计等。
2. 项目快速启动
环境准备
首先,确保您的开发环境满足以下要求:
- Python 3.5+
- PyTorch 0.4.1
- Ninja, NumPy, OpenCV, Pillow
- 推荐使用Anaconda进行环境管理。
安装依赖项及编译必要的CUDA组件:
cd structure_knowledge_distillation/libs
sh build.sh
python build.py
测试模型
以Cityscapes数据集为例,测试经过蒸馏的学生模型。首先下载所需数据,并配置正确的数据路径:
sh run_test.sh
# 注意:需要修改data-dir指向你的实际数据目录
使用蒸馏后的模型,在Cityscapes测试集上可以达到约73.05%的mIoU。
3. 应用案例与最佳实践
为了展示如何有效利用这个项目,考虑以下最佳实践步骤:
-
复现论文实验: 使用
run_train_val.sh脚本,并调整参数如is_pi_use,is_pa_use,is_ho_use来复现实验中的不同知识蒸馏策略。 -
模型迁移: 将pair-wise和pixel-wise蒸馏机制应用于自己的模型和数据集,需仔细调整损失函数的权重以及网络结构,以适应特定任务需求。
-
性能评估: 利用预训练模型作为教师网络,训练并在目标数据集上验证学生模型的性能,关注mIoU或相关评价指标的变化。
4. 典型生态项目
虽然该项目主要是为语义分割设计的,但其知识蒸馏的方法论在计算机视觉社区具有广泛的适用性。例如,你可以将这种技术应用于:
-
对象检测:使用类似FCOS框架,结合本项目中的蒸馏技巧,优化轻量级检测器的性能。
-
深度估计:借鉴VNL的实现,引入蒸馏策略,提高小型模型的精度与鲁棒性。
-
视频分类或动作识别:尽管本项目未直接涉及这些领域,但知识蒸馏的原理同样适用于时序数据的学习。
开发者可以通过邮件联系作者获取额外的模型或其他特定需求的帮助(yifan.liu04@adelaide.edu.au)。
以上就是围绕“结构化知识蒸馏”开源项目的基础教程。无论你是想要研究语义分割的最新进展,还是希望在自己项目中集成高效的模型蒸馏技术,该项目都将是一个宝贵的资源。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00