结构化知识蒸馏教程:语义分割与密集预测
1. 项目介绍
本教程基于GitHub上的开源项目结构化知识蒸馏,该仓库提供了CVPR 2019年口头报告论文《用于密集预测的结构化知识蒸馏》的官方实现代码。此项目不仅限于语义分割任务,还扩展到了其他计算机视觉任务中。作者提出了一种结构化知识传输方法,通过pair-wise和pixel-wise的蒸馏策略,增强学生模型的学习能力,提高其在复杂场景下的性能表现。
主要特点包括:
- Pair-wise 和 Pixel-wise Distillation: 强制模型间的一致性。
- 稳定训练的GAN部分更新: 在master分支上可找到更稳定的训练版本。
- 支持多种任务和数据集: 包括语义分割、对象检测、深度估计等。
2. 项目快速启动
环境准备
首先,确保您的开发环境满足以下要求:
- Python 3.5+
- PyTorch 0.4.1
- Ninja, NumPy, OpenCV, Pillow
- 推荐使用Anaconda进行环境管理。
安装依赖项及编译必要的CUDA组件:
cd structure_knowledge_distillation/libs
sh build.sh
python build.py
测试模型
以Cityscapes数据集为例,测试经过蒸馏的学生模型。首先下载所需数据,并配置正确的数据路径:
sh run_test.sh
# 注意:需要修改data-dir指向你的实际数据目录
使用蒸馏后的模型,在Cityscapes测试集上可以达到约73.05%的mIoU。
3. 应用案例与最佳实践
为了展示如何有效利用这个项目,考虑以下最佳实践步骤:
-
复现论文实验: 使用
run_train_val.sh脚本,并调整参数如is_pi_use,is_pa_use,is_ho_use来复现实验中的不同知识蒸馏策略。 -
模型迁移: 将pair-wise和pixel-wise蒸馏机制应用于自己的模型和数据集,需仔细调整损失函数的权重以及网络结构,以适应特定任务需求。
-
性能评估: 利用预训练模型作为教师网络,训练并在目标数据集上验证学生模型的性能,关注mIoU或相关评价指标的变化。
4. 典型生态项目
虽然该项目主要是为语义分割设计的,但其知识蒸馏的方法论在计算机视觉社区具有广泛的适用性。例如,你可以将这种技术应用于:
-
对象检测:使用类似FCOS框架,结合本项目中的蒸馏技巧,优化轻量级检测器的性能。
-
深度估计:借鉴VNL的实现,引入蒸馏策略,提高小型模型的精度与鲁棒性。
-
视频分类或动作识别:尽管本项目未直接涉及这些领域,但知识蒸馏的原理同样适用于时序数据的学习。
开发者可以通过邮件联系作者获取额外的模型或其他特定需求的帮助(yifan.liu04@adelaide.edu.au)。
以上就是围绕“结构化知识蒸馏”开源项目的基础教程。无论你是想要研究语义分割的最新进展,还是希望在自己项目中集成高效的模型蒸馏技术,该项目都将是一个宝贵的资源。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00