AFL++ 项目中 fuzzer 异常终止问题分析
问题现象
在 AFL++ 项目中,一个针对 OpenSSL cmp 模块的模糊测试进程突然终止。通过日志分析发现,该 fuzzer 在运行约 4 天 19 小时后停止工作,最终生成的日志文件大小接近 2GB(2,068,420,061 字节)。错误信息显示,问题发生在读取 AFL++ 工具时出现异常。
技术背景
AFL++ 是一个先进的模糊测试工具,它通过插桩技术监控目标程序的执行路径。在 fork server 模式下运行时,AFL++ 会通过管道与目标程序通信。当这个通信管道异常断开时,通常意味着模糊测试进程本身出现了问题。
根本原因分析
通过深入分析,我们发现问题的根源在于:
-
内存耗尽:系统配置的 tmpfs 大小为 32GB(33554432k),但模糊测试过程中可能消耗了大量内存资源,导致系统触发 OOM(Out Of Memory)机制终止了进程。
-
管道通信中断:当 AFL++ 主进程被系统终止时,它与目标程序之间的通信管道会断开。此时目标程序中负责与 AFL++ 通信的代码会检测到这个异常,并输出相应的错误信息后退出。
技术细节
在 AFL++ 的 instrumentation 代码中,存在一个关键的错误处理逻辑:
if (read(FORKSRV_FD, &was_killed, 4) != 4) {
write_error("read from AFL++ tool");
_exit(1);
}
这段代码负责从 AFL++ 工具读取数据。当读取失败时(返回值不等于4),会记录错误并退出。这种情况通常发生在:
- AFL++ 主进程异常终止
- 系统资源耗尽
- 文件描述符被意外关闭
解决方案与最佳实践
针对此类问题,我们建议采取以下措施:
-
资源监控:在长时间运行的模糊测试任务中,应该设置资源监控机制,特别是内存使用情况。
-
日志轮转:配置日志轮转策略,避免单个日志文件过大影响系统性能。
-
测试环境优化:
- 增加 tmpfs 大小或使用持久化存储
- 设置合理的 memory limit
- 考虑使用 cgroups 限制资源使用
-
错误处理增强:在自定义的模糊测试脚本中,可以增加对 AFL++ 进程状态的监控,及时发现并处理异常情况。
经验总结
模糊测试特别是长时间运行的测试任务,需要特别注意系统资源管理。在实际应用中,建议:
- 定期检查测试进程状态
- 设置合理的资源限制
- 实现自动化监控和告警机制
- 对于关键测试任务,考虑实现断点续测功能
通过以上措施,可以有效减少类似问题的发生,提高模糊测试的稳定性和效率。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00