Hypothesis项目中浮点数NaN在唯一性集合中的处理问题分析
2025-05-29 14:35:29作者:霍妲思
在Python测试框架Hypothesis的开发过程中,我们发现了一个与浮点数NaN(Not a Number)相关的边界条件问题。这个问题会导致使用unique=True参数的集合测试出现不稳定的行为,表现为测试结果时好时坏(flaky tests)。
问题现象
当测试代码尝试生成包含浮点数的唯一性集合(如列表、字典键或集合)时,如果生成的浮点数中包含多个NaN值,测试会出现意外失败。具体表现为:
- 使用
lists(st.floats(), unique=True)生成列表时不稳定 - 使用
dictionaries(keys=st.floats(), ...)生成字典时出现类似问题 - 问题特别容易在使用
from_type和类型变量时显现
根本原因分析
经过深入排查,我们发现问题的核心在于Python对NaN值的特殊处理方式:
- NaN的身份比较问题:在Python中,NaN与自身比较时不相等,即
nan == nan返回False - 列表包含检查的优化:Python列表在进行
in操作时会先进行is身份比较,再执行==值比较 - Hypothesis的浮点数生成机制:框架内部使用整数到浮点数的转换函数
int_to_float,这个转换会破坏原始对象的身份标识
关键问题代码表现为:
n = 18444492273895866368
assert math.isnan(int_to_float(n)) # 生成一个NaN
assert int_to_float(n) not in [int_to_float(n)] # 意外失败
技术细节
-
浮点数生成过程:
- Hypothesis通过整数到浮点数的转换生成各种浮点值
- 对于NaN值,每次转换都会产生不同的对象引用
- 但根据IEEE 754标准,这些NaN在值比较时应该被视为相同
-
唯一性检查流程:
- 生成第一个NaN时被加入集合
- 生成第二个NaN时,由于是不同的对象引用,会通过
is检查 - 但在值比较时又被判定为重复,导致后续处理逻辑混乱
-
类型系统交互:
- 当与类型变量(TypeVar)系统交互时,问题更加复杂
- 类型推导和缓存机制可能加剧了对象引用的不一致性
解决方案
经过讨论,我们确定了以下解决方案:
-
确保NaN对象唯一性:
- 修改浮点数生成器,对NaN值总是返回新的对象引用
- 避免依赖对象身份比较带来的优化
-
架构层面改进:
- 在中间表示(IR)层之上处理浮点数的唯一性
- 保持生成策略的纯净性,不依赖Python运行时的特殊行为
-
测试策略调整:
- 对涉及NaN的测试用例增加特殊处理
- 确保测试稳定性不受浮点数比较特性的影响
经验总结
这个案例给我们带来了几个重要的启示:
-
边界条件测试的重要性:NaN作为浮点数的特殊值,经常被忽略但在实际应用中可能引发严重问题
-
Python语言特性的深入理解:了解
is和==的区别以及容器类型的包含检查优化对框架开发至关重要 -
测试框架的稳定性设计:即使是测试工具本身,也需要考虑各种边界条件以确保其可靠性
-
类型系统的复杂性:当基本类型与高级类型系统交互时,可能产生意想不到的边缘情况
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92