Hypothesis项目中浮点数NaN在唯一性集合中的处理问题分析
2025-05-29 10:09:45作者:霍妲思
在Python测试框架Hypothesis的开发过程中,我们发现了一个与浮点数NaN(Not a Number)相关的边界条件问题。这个问题会导致使用unique=True参数的集合测试出现不稳定的行为,表现为测试结果时好时坏(flaky tests)。
问题现象
当测试代码尝试生成包含浮点数的唯一性集合(如列表、字典键或集合)时,如果生成的浮点数中包含多个NaN值,测试会出现意外失败。具体表现为:
- 使用
lists(st.floats(), unique=True)生成列表时不稳定 - 使用
dictionaries(keys=st.floats(), ...)生成字典时出现类似问题 - 问题特别容易在使用
from_type和类型变量时显现
根本原因分析
经过深入排查,我们发现问题的核心在于Python对NaN值的特殊处理方式:
- NaN的身份比较问题:在Python中,NaN与自身比较时不相等,即
nan == nan返回False - 列表包含检查的优化:Python列表在进行
in操作时会先进行is身份比较,再执行==值比较 - Hypothesis的浮点数生成机制:框架内部使用整数到浮点数的转换函数
int_to_float,这个转换会破坏原始对象的身份标识
关键问题代码表现为:
n = 18444492273895866368
assert math.isnan(int_to_float(n)) # 生成一个NaN
assert int_to_float(n) not in [int_to_float(n)] # 意外失败
技术细节
-
浮点数生成过程:
- Hypothesis通过整数到浮点数的转换生成各种浮点值
- 对于NaN值,每次转换都会产生不同的对象引用
- 但根据IEEE 754标准,这些NaN在值比较时应该被视为相同
-
唯一性检查流程:
- 生成第一个NaN时被加入集合
- 生成第二个NaN时,由于是不同的对象引用,会通过
is检查 - 但在值比较时又被判定为重复,导致后续处理逻辑混乱
-
类型系统交互:
- 当与类型变量(TypeVar)系统交互时,问题更加复杂
- 类型推导和缓存机制可能加剧了对象引用的不一致性
解决方案
经过讨论,我们确定了以下解决方案:
-
确保NaN对象唯一性:
- 修改浮点数生成器,对NaN值总是返回新的对象引用
- 避免依赖对象身份比较带来的优化
-
架构层面改进:
- 在中间表示(IR)层之上处理浮点数的唯一性
- 保持生成策略的纯净性,不依赖Python运行时的特殊行为
-
测试策略调整:
- 对涉及NaN的测试用例增加特殊处理
- 确保测试稳定性不受浮点数比较特性的影响
经验总结
这个案例给我们带来了几个重要的启示:
-
边界条件测试的重要性:NaN作为浮点数的特殊值,经常被忽略但在实际应用中可能引发严重问题
-
Python语言特性的深入理解:了解
is和==的区别以及容器类型的包含检查优化对框架开发至关重要 -
测试框架的稳定性设计:即使是测试工具本身,也需要考虑各种边界条件以确保其可靠性
-
类型系统的复杂性:当基本类型与高级类型系统交互时,可能产生意想不到的边缘情况
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350