AWS Deep Learning Containers发布TensorFlow 2.18.0训练镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预配置深度学习环境容器镜像,它集成了主流深度学习框架及其依赖项,使开发者能够快速部署和运行深度学习工作负载。这些容器镜像经过优化,可直接在Amazon EC2实例或Amazon ECS/EKS等服务上使用。
近日,AWS发布了TensorFlow 2.18.0版本的训练镜像,支持Python 3.10环境,分别提供了CPU和GPU两种版本。这些镜像基于Ubuntu 22.04操作系统构建,专为EC2实例优化。
镜像版本特性
本次发布的TensorFlow训练镜像包含两个主要版本:
-
CPU版本:适用于无GPU加速的计算场景,镜像标识为
tensorflow-training:2.18.0-cpu-py310-ubuntu22.04-ec2 -
GPU版本:支持CUDA 12.5,适用于需要GPU加速的训练任务,镜像标识为
tensorflow-training:2.18.0-gpu-py310-cu125-ubuntu22.04-ec2
关键技术组件
两个版本都预装了TensorFlow 2.18.0框架,这是TensorFlow的一个重要稳定版本。镜像中还包含了深度学习开发常用的工具和库:
- 数据处理:h5py 3.12.1(HDF5文件支持)、tensorflow-datasets 4.9.7(数据集工具)
- 数学计算:NumPy 2.0.2、SciPy 1.15.1
- 图像处理:OpenCV 4.11.0.86、Pillow 11.1.0
- 分布式训练:mpi4py 4.0.1(MPI支持)
- AWS集成:awscli 1.37.5、botocore 1.36.5(AWS命令行工具)
GPU版本额外包含了CUDA 12.5工具链、cuDNN和NCCL库,这些都是GPU加速计算的关键组件。
系统级优化
这些镜像基于Ubuntu 22.04 LTS构建,确保了系统稳定性和长期支持。系统层面包含了:
- GCC 11工具链(libgcc-11-dev)
- C++标准库(libstdc++-11-dev)
- 开发工具(如emacs编辑器)
使用场景建议
这些预构建的DLC镜像特别适合以下场景:
- 快速实验部署:研究人员可以立即开始模型训练,无需花费时间配置环境
- 生产环境训练:企业可以直接使用这些经过AWS优化的镜像部署生产训练流水线
- 混合云场景:确保本地开发环境和云端训练环境的一致性
对于需要自定义环境的用户,这些镜像也可以作为基础镜像,通过添加额外的依赖项来构建满足特定需求的容器。
AWS Deep Learning Containers的持续更新确保了开发者能够及时获得最新框架版本和安全补丁,同时保持环境的稳定性和兼容性。TensorFlow 2.18.0版本的发布为深度学习开发者提供了更多功能和性能优化。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C069
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00