AWS Deep Learning Containers发布TensorFlow 2.18.0训练镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预配置深度学习环境容器镜像,它集成了主流深度学习框架及其依赖项,使开发者能够快速部署和运行深度学习工作负载。这些容器镜像经过优化,可直接在Amazon EC2实例或Amazon ECS/EKS等服务上使用。
近日,AWS发布了TensorFlow 2.18.0版本的训练镜像,支持Python 3.10环境,分别提供了CPU和GPU两种版本。这些镜像基于Ubuntu 22.04操作系统构建,专为EC2实例优化。
镜像版本特性
本次发布的TensorFlow训练镜像包含两个主要版本:
-
CPU版本:适用于无GPU加速的计算场景,镜像标识为
tensorflow-training:2.18.0-cpu-py310-ubuntu22.04-ec2
-
GPU版本:支持CUDA 12.5,适用于需要GPU加速的训练任务,镜像标识为
tensorflow-training:2.18.0-gpu-py310-cu125-ubuntu22.04-ec2
关键技术组件
两个版本都预装了TensorFlow 2.18.0框架,这是TensorFlow的一个重要稳定版本。镜像中还包含了深度学习开发常用的工具和库:
- 数据处理:h5py 3.12.1(HDF5文件支持)、tensorflow-datasets 4.9.7(数据集工具)
- 数学计算:NumPy 2.0.2、SciPy 1.15.1
- 图像处理:OpenCV 4.11.0.86、Pillow 11.1.0
- 分布式训练:mpi4py 4.0.1(MPI支持)
- AWS集成:awscli 1.37.5、botocore 1.36.5(AWS命令行工具)
GPU版本额外包含了CUDA 12.5工具链、cuDNN和NCCL库,这些都是GPU加速计算的关键组件。
系统级优化
这些镜像基于Ubuntu 22.04 LTS构建,确保了系统稳定性和长期支持。系统层面包含了:
- GCC 11工具链(libgcc-11-dev)
- C++标准库(libstdc++-11-dev)
- 开发工具(如emacs编辑器)
使用场景建议
这些预构建的DLC镜像特别适合以下场景:
- 快速实验部署:研究人员可以立即开始模型训练,无需花费时间配置环境
- 生产环境训练:企业可以直接使用这些经过AWS优化的镜像部署生产训练流水线
- 混合云场景:确保本地开发环境和云端训练环境的一致性
对于需要自定义环境的用户,这些镜像也可以作为基础镜像,通过添加额外的依赖项来构建满足特定需求的容器。
AWS Deep Learning Containers的持续更新确保了开发者能够及时获得最新框架版本和安全补丁,同时保持环境的稳定性和兼容性。TensorFlow 2.18.0版本的发布为深度学习开发者提供了更多功能和性能优化。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









