Marqo 2.17.0版本发布:支持API与推理服务分离部署
2025-06-12 19:12:18作者:郦嵘贵Just
项目简介
Marqo是一个开源的向量搜索引擎,它结合了传统的关键词搜索和现代的向量搜索技术,为用户提供高效的混合搜索能力。Marqo的核心优势在于能够同时处理结构化数据和非结构化数据,支持多种预训练模型,并提供了简单易用的API接口。
2.17.0版本核心更新
1. 新增三种运行模式
本次版本最重要的更新是引入了三种运行模式,为不同规模的应用提供了更灵活的部署方案:
- Combined模式:传统的运行方式,API服务和推理服务运行在同一个进程中,适合开发和测试环境。
- API模式:专门运行Marqo的API服务,适合作为前端接口服务。
- Inference模式:专门运行向量推理服务,专注于处理嵌入生成任务。
这种架构分离带来了几个显著优势:
- 资源隔离:API服务和推理服务可以独立扩展,避免资源争用
- 性能优化:推理服务可以专注于计算密集型任务,API服务专注于请求处理
- 弹性伸缩:根据实际负载情况,可以单独扩展API或推理服务
2. 搜索参数增强
2.17.0版本对搜索功能进行了两项重要增强:
重排序深度控制
新增了rerankDepth(用于纯向量搜索)和rerankDepthTensor(用于混合搜索)参数。这些参数允许开发者控制重排序阶段的文档数量,确保在某些边缘情况下也能获得一致数量的搜索结果。
在实际应用中,这解决了以下问题:
- 当搜索结果较少时,保证返回结果数量的稳定性
- 在分页场景下提供更一致的体验
- 优化搜索性能,避免不必要的重排序计算
混合搜索查询增强
引入了queryTensor和queryLexical参数,允许在混合搜索中为向量查询和关键词查询分别设置权重。这为搜索相关性调优提供了更细粒度的控制。
典型使用场景包括:
- 当某些查询更适合向量搜索时,可以增加向量查询的权重
- 对于精确匹配需求高的场景,可以提高关键词查询的权重
- 实现动态调整搜索策略,根据查询类型自动优化权重
3. 性能优化与问题修复
本次版本还包含了一些重要的性能优化和问题修复:
-
混合搜索优化:修复了在纯关键词搜索场景下不必要生成嵌入向量的性能问题。现在当检索和重排序都设置为"lexical"时,系统会跳过向量生成步骤,显著提升搜索速度。
-
模型修正:修复了hf/bge-*系列模型使用错误池化方法的问题。这些模型现在使用正确的池化方法,能够生成更准确的向量表示。
技术影响与最佳实践
部署架构建议
对于生产环境,建议采用分离部署模式:
- 中小规模部署:API模式和Inference模式分别部署,共享同一集群
- 大规模部署:API服务可以水平扩展,Inference服务可以部署在GPU节点上
- 云原生部署:可以将API和Inference服务部署为独立的Kubernetes Deployment
搜索参数调优指南
-
重排序深度:
- 对于高精度需求:设置较大的rerankDepth值(如100-200)
- 对于性能敏感场景:使用较小的值(如50-100)
- 根据文档集大小动态调整
-
混合搜索权重:
- 通用搜索:初始设置为0.5:0.5的权重比
- 语义搜索主导:增加queryTensor权重(如0.7:0.3)
- 精确匹配主导:增加queryLexical权重(如0.3:0.7)
- 通过A/B测试确定最佳权重组合
总结
Marqo 2.17.0版本通过引入多模式运行架构和增强搜索参数,为生产环境部署和搜索质量优化提供了更多可能性。这些改进使得Marqo能够更好地适应不同规模的业务需求,同时提供了更精细的搜索控制能力。对于正在使用或考虑采用向量搜索技术的团队,这个版本值得重点关注和评估升级。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
328
2.75 K
deepin linux kernel
C
24
7
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
368
3.11 K
Ascend Extension for PyTorch
Python
162
182
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
248
87
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
仓颉编译器源码及 cjdb 调试工具。
C++
125
853
React Native鸿蒙化仓库
JavaScript
240
312
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.08 K
617
暂无简介
Dart
612
138