Marqo 2.18.0版本发布:新增Facets搜索聚合功能与多项优化
项目简介
Marqo是一个开源的向量搜索引擎,它结合了传统搜索引擎的优势与最新的人工智能技术,能够实现语义搜索、混合搜索等多种高级搜索功能。Marqo特别适合需要处理复杂查询和多样化数据类型的应用场景,如图片搜索、多模态搜索等。
版本亮点
Facets搜索聚合功能
在2.18.0版本中,Marqo引入了Facets功能,这是一个强大的数据聚合工具。Facets允许用户基于特定字段对文档数据进行分组和统计,这在构建复杂的搜索界面时特别有用。
Facets功能的主要应用场景包括:
- 构建筛选器:可以基于产品类别、价格范围等字段创建动态筛选器
- 数据分布分析:快速了解数据在不同维度上的分布情况
- 钻取式搜索:允许用户从汇总视图逐步深入到具体数据
例如,在电商搜索中,可以使用Facets展示不同价格区间的商品数量、不同品牌的分布情况等,为用户提供直观的导航和过滤选项。
查询参数处理优化
新版本修复了一个可能导致500错误的问题,该问题与查询字符串和过滤字符串中的特殊字符处理有关。Marqo现在会对这些值进行适当的清理和转义,确保系统能够稳定处理各种输入。
这项改进特别重要,因为在实际应用中,用户输入的查询可能包含各种特殊字符,如引号、斜杠等。良好的输入处理能力是搜索引擎健壮性的重要保障。
媒体URL模态推断修复
2.18.0版本还修复了一个与多模态搜索相关的问题。在某些情况下,媒体URL中的查询参数会干扰Marqo基于文件扩展名的内容类型推断逻辑。这可能导致系统错误地判断文件类型,进而影响搜索效果。
这项修复确保了Marqo在多模态搜索场景下的准确性,无论是处理图片、视频还是其他类型的媒体文件,系统都能正确识别其内容类型并应用适当的处理流程。
技术意义
这些更新从不同层面提升了Marqo的稳定性和功能性:
- 功能性扩展:Facets功能的加入使Marqo具备了更丰富的数据分析和展示能力,不再局限于简单的搜索结果返回
- 稳定性增强:特殊字符处理和模态推断的改进减少了系统出错的可能性
- 用户体验提升:更健壮的系统行为和更丰富的功能最终都会转化为更好的用户体验
对于开发者而言,这些更新意味着可以构建更复杂、更可靠的搜索应用,而不用担心底层引擎的限制或潜在问题。
升级建议
对于正在使用Marqo的项目团队,建议评估2.18.0版本的新功能是否适用于当前场景。特别是那些需要构建复杂搜索界面或处理多样化内容的项目,Facets功能可能会带来显著的改进。
升级过程通常较为平滑,但建议在测试环境中先行验证,特别是检查自定义查询逻辑是否受到输入处理变更的影响。对于依赖多模态搜索的应用,则应重点验证媒体文件处理的准确性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00