DIST_KD 项目使用教程
1. 项目介绍
DIST_KD 是一个开源项目,旨在通过知识蒸馏(Knowledge Distillation)技术,从更强的教师模型中提取知识,以提升学生模型的性能。该项目由 Tao Huang, Shan You, Fei Wang, Chen Qian, 和 Chang Xu 开发,并在 NeurIPS 2022 上发表。DIST_KD 提供了多种任务的实现,包括图像分类、目标检测和语义分割。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了必要的依赖项。DIST_KD 主要依赖于 PyTorch 和一些常见的深度学习库。你可以通过以下命令安装这些依赖项:
pip install torch torchvision
2.2 克隆项目
使用 Git 克隆 DIST_KD 项目到本地:
git clone https://github.com/hunto/DIST_KD.git
cd DIST_KD
2.3 数据集准备
DIST_KD 支持多种数据集,如 ImageNet、Cityscapes 等。以 Cityscapes 数据集为例,将其放置在 /data/cityscapes
目录下。
2.4 预训练模型
下载所需的预训练模型,并将其放置在 /ckpts
目录下。例如:
mkdir ckpts
cd ckpts
wget https://example.com/pretrained/resnet101-imagenet.pth
2.5 训练模型
使用提供的脚本进行模型训练。以下是一个训练语义分割模型的示例:
cd segmentation
python -m torch.distributed.launch --nproc_per_node=8 train.py \
--model deeplabv3 \
--backbone resnet101 \
--data /data/cityscapes/ \
--save-dir /path/to/save/logs \
--gpu-id 0,1,2,3,4,5,6,7 \
--pretrained /ckpts/deeplabv3_resnet101_citys_best_model.pth
3. 应用案例和最佳实践
3.1 图像分类
在图像分类任务中,DIST_KD 可以从更强的教师模型(如 ResNet-101)中提取知识,提升学生模型(如 ResNet-18)的性能。以下是一个典型的配置:
CONFIG=configs/strategies/distill/resnet_dist.yaml
MODEL=tv_resnet18
T_MODEL=tv_resnet101
EXP_NAME=resnet18_dist
3.2 语义分割
在语义分割任务中,DIST_KD 可以显著提升学生模型的分割精度。例如,使用 DeepLabV3-ResNet18 作为学生模型,DeepLabV3-ResNet101 作为教师模型:
python -m torch.distributed.launch --nproc_per_node=8 train.py \
--model deeplabv3 \
--backbone resnet18 \
--data /data/cityscapes/ \
--save-dir /path/to/save/logs \
--gpu-id 0,1,2,3,4,5,6,7 \
--pretrained /ckpts/deeplabv3_resnet101_citys_best_model.pth
3.3 目标检测
目标检测任务的实现将在未来版本中提供。
4. 典型生态项目
4.1 PyTorch
DIST_KD 基于 PyTorch 框架开发,充分利用了 PyTorch 的灵活性和高效性。
4.2 Cityscapes
Cityscapes 是一个广泛使用的语义分割数据集,DIST_KD 提供了对该数据集的支持。
4.3 ImageNet
ImageNet 是一个大规模的图像分类数据集,DIST_KD 在 ImageNet 上进行了广泛的实验,证明了其有效性。
通过以上步骤,你可以快速上手 DIST_KD 项目,并在不同的任务中应用知识蒸馏技术,提升模型性能。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









