DIST_KD 项目使用教程
1. 项目介绍
DIST_KD 是一个开源项目,旨在通过知识蒸馏(Knowledge Distillation)技术,从更强的教师模型中提取知识,以提升学生模型的性能。该项目由 Tao Huang, Shan You, Fei Wang, Chen Qian, 和 Chang Xu 开发,并在 NeurIPS 2022 上发表。DIST_KD 提供了多种任务的实现,包括图像分类、目标检测和语义分割。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了必要的依赖项。DIST_KD 主要依赖于 PyTorch 和一些常见的深度学习库。你可以通过以下命令安装这些依赖项:
pip install torch torchvision
2.2 克隆项目
使用 Git 克隆 DIST_KD 项目到本地:
git clone https://github.com/hunto/DIST_KD.git
cd DIST_KD
2.3 数据集准备
DIST_KD 支持多种数据集,如 ImageNet、Cityscapes 等。以 Cityscapes 数据集为例,将其放置在 /data/cityscapes 目录下。
2.4 预训练模型
下载所需的预训练模型,并将其放置在 /ckpts 目录下。例如:
mkdir ckpts
cd ckpts
wget https://example.com/pretrained/resnet101-imagenet.pth
2.5 训练模型
使用提供的脚本进行模型训练。以下是一个训练语义分割模型的示例:
cd segmentation
python -m torch.distributed.launch --nproc_per_node=8 train.py \
--model deeplabv3 \
--backbone resnet101 \
--data /data/cityscapes/ \
--save-dir /path/to/save/logs \
--gpu-id 0,1,2,3,4,5,6,7 \
--pretrained /ckpts/deeplabv3_resnet101_citys_best_model.pth
3. 应用案例和最佳实践
3.1 图像分类
在图像分类任务中,DIST_KD 可以从更强的教师模型(如 ResNet-101)中提取知识,提升学生模型(如 ResNet-18)的性能。以下是一个典型的配置:
CONFIG=configs/strategies/distill/resnet_dist.yaml
MODEL=tv_resnet18
T_MODEL=tv_resnet101
EXP_NAME=resnet18_dist
3.2 语义分割
在语义分割任务中,DIST_KD 可以显著提升学生模型的分割精度。例如,使用 DeepLabV3-ResNet18 作为学生模型,DeepLabV3-ResNet101 作为教师模型:
python -m torch.distributed.launch --nproc_per_node=8 train.py \
--model deeplabv3 \
--backbone resnet18 \
--data /data/cityscapes/ \
--save-dir /path/to/save/logs \
--gpu-id 0,1,2,3,4,5,6,7 \
--pretrained /ckpts/deeplabv3_resnet101_citys_best_model.pth
3.3 目标检测
目标检测任务的实现将在未来版本中提供。
4. 典型生态项目
4.1 PyTorch
DIST_KD 基于 PyTorch 框架开发,充分利用了 PyTorch 的灵活性和高效性。
4.2 Cityscapes
Cityscapes 是一个广泛使用的语义分割数据集,DIST_KD 提供了对该数据集的支持。
4.3 ImageNet
ImageNet 是一个大规模的图像分类数据集,DIST_KD 在 ImageNet 上进行了广泛的实验,证明了其有效性。
通过以上步骤,你可以快速上手 DIST_KD 项目,并在不同的任务中应用知识蒸馏技术,提升模型性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00