DIST_KD 项目使用教程
1. 项目介绍
DIST_KD 是一个开源项目,旨在通过知识蒸馏(Knowledge Distillation)技术,从更强的教师模型中提取知识,以提升学生模型的性能。该项目由 Tao Huang, Shan You, Fei Wang, Chen Qian, 和 Chang Xu 开发,并在 NeurIPS 2022 上发表。DIST_KD 提供了多种任务的实现,包括图像分类、目标检测和语义分割。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了必要的依赖项。DIST_KD 主要依赖于 PyTorch 和一些常见的深度学习库。你可以通过以下命令安装这些依赖项:
pip install torch torchvision
2.2 克隆项目
使用 Git 克隆 DIST_KD 项目到本地:
git clone https://github.com/hunto/DIST_KD.git
cd DIST_KD
2.3 数据集准备
DIST_KD 支持多种数据集,如 ImageNet、Cityscapes 等。以 Cityscapes 数据集为例,将其放置在 /data/cityscapes 目录下。
2.4 预训练模型
下载所需的预训练模型,并将其放置在 /ckpts 目录下。例如:
mkdir ckpts
cd ckpts
wget https://example.com/pretrained/resnet101-imagenet.pth
2.5 训练模型
使用提供的脚本进行模型训练。以下是一个训练语义分割模型的示例:
cd segmentation
python -m torch.distributed.launch --nproc_per_node=8 train.py \
--model deeplabv3 \
--backbone resnet101 \
--data /data/cityscapes/ \
--save-dir /path/to/save/logs \
--gpu-id 0,1,2,3,4,5,6,7 \
--pretrained /ckpts/deeplabv3_resnet101_citys_best_model.pth
3. 应用案例和最佳实践
3.1 图像分类
在图像分类任务中,DIST_KD 可以从更强的教师模型(如 ResNet-101)中提取知识,提升学生模型(如 ResNet-18)的性能。以下是一个典型的配置:
CONFIG=configs/strategies/distill/resnet_dist.yaml
MODEL=tv_resnet18
T_MODEL=tv_resnet101
EXP_NAME=resnet18_dist
3.2 语义分割
在语义分割任务中,DIST_KD 可以显著提升学生模型的分割精度。例如,使用 DeepLabV3-ResNet18 作为学生模型,DeepLabV3-ResNet101 作为教师模型:
python -m torch.distributed.launch --nproc_per_node=8 train.py \
--model deeplabv3 \
--backbone resnet18 \
--data /data/cityscapes/ \
--save-dir /path/to/save/logs \
--gpu-id 0,1,2,3,4,5,6,7 \
--pretrained /ckpts/deeplabv3_resnet101_citys_best_model.pth
3.3 目标检测
目标检测任务的实现将在未来版本中提供。
4. 典型生态项目
4.1 PyTorch
DIST_KD 基于 PyTorch 框架开发,充分利用了 PyTorch 的灵活性和高效性。
4.2 Cityscapes
Cityscapes 是一个广泛使用的语义分割数据集,DIST_KD 提供了对该数据集的支持。
4.3 ImageNet
ImageNet 是一个大规模的图像分类数据集,DIST_KD 在 ImageNet 上进行了广泛的实验,证明了其有效性。
通过以上步骤,你可以快速上手 DIST_KD 项目,并在不同的任务中应用知识蒸馏技术,提升模型性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00