DIST_KD 项目使用教程
1. 项目介绍
DIST_KD 是一个开源项目,旨在通过知识蒸馏(Knowledge Distillation)技术,从更强的教师模型中提取知识,以提升学生模型的性能。该项目由 Tao Huang, Shan You, Fei Wang, Chen Qian, 和 Chang Xu 开发,并在 NeurIPS 2022 上发表。DIST_KD 提供了多种任务的实现,包括图像分类、目标检测和语义分割。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了必要的依赖项。DIST_KD 主要依赖于 PyTorch 和一些常见的深度学习库。你可以通过以下命令安装这些依赖项:
pip install torch torchvision
2.2 克隆项目
使用 Git 克隆 DIST_KD 项目到本地:
git clone https://github.com/hunto/DIST_KD.git
cd DIST_KD
2.3 数据集准备
DIST_KD 支持多种数据集,如 ImageNet、Cityscapes 等。以 Cityscapes 数据集为例,将其放置在 /data/cityscapes 目录下。
2.4 预训练模型
下载所需的预训练模型,并将其放置在 /ckpts 目录下。例如:
mkdir ckpts
cd ckpts
wget https://example.com/pretrained/resnet101-imagenet.pth
2.5 训练模型
使用提供的脚本进行模型训练。以下是一个训练语义分割模型的示例:
cd segmentation
python -m torch.distributed.launch --nproc_per_node=8 train.py \
--model deeplabv3 \
--backbone resnet101 \
--data /data/cityscapes/ \
--save-dir /path/to/save/logs \
--gpu-id 0,1,2,3,4,5,6,7 \
--pretrained /ckpts/deeplabv3_resnet101_citys_best_model.pth
3. 应用案例和最佳实践
3.1 图像分类
在图像分类任务中,DIST_KD 可以从更强的教师模型(如 ResNet-101)中提取知识,提升学生模型(如 ResNet-18)的性能。以下是一个典型的配置:
CONFIG=configs/strategies/distill/resnet_dist.yaml
MODEL=tv_resnet18
T_MODEL=tv_resnet101
EXP_NAME=resnet18_dist
3.2 语义分割
在语义分割任务中,DIST_KD 可以显著提升学生模型的分割精度。例如,使用 DeepLabV3-ResNet18 作为学生模型,DeepLabV3-ResNet101 作为教师模型:
python -m torch.distributed.launch --nproc_per_node=8 train.py \
--model deeplabv3 \
--backbone resnet18 \
--data /data/cityscapes/ \
--save-dir /path/to/save/logs \
--gpu-id 0,1,2,3,4,5,6,7 \
--pretrained /ckpts/deeplabv3_resnet101_citys_best_model.pth
3.3 目标检测
目标检测任务的实现将在未来版本中提供。
4. 典型生态项目
4.1 PyTorch
DIST_KD 基于 PyTorch 框架开发,充分利用了 PyTorch 的灵活性和高效性。
4.2 Cityscapes
Cityscapes 是一个广泛使用的语义分割数据集,DIST_KD 提供了对该数据集的支持。
4.3 ImageNet
ImageNet 是一个大规模的图像分类数据集,DIST_KD 在 ImageNet 上进行了广泛的实验,证明了其有效性。
通过以上步骤,你可以快速上手 DIST_KD 项目,并在不同的任务中应用知识蒸馏技术,提升模型性能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0133
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00