OpenTelemetry-JS中如何为Fetch请求添加自定义Span属性
2025-06-27 12:49:59作者:尤峻淳Whitney
在OpenTelemetry-JS的实践中,开发者经常需要监控前端应用的网络请求行为。当使用浏览器原生的Fetch API时,OpenTelemetry会自动创建对应的Span记录请求过程,但有时我们需要在这些Span中添加业务相关的自定义属性(例如GraphQL查询语句)。
核心问题分析
默认情况下,Fetch请求的Span会在HTTP请求完成时立即结束(遵循HTTP语义约定)。这意味着在常见的异步处理模式中:
const res = await fetch(url); // Span在此阶段已结束
processResponse(res); // 此时已无法修改Span属性
这种设计符合OpenTelemetry的语义规范,因为HTTP Span应该只包含协议层面的信息(如状态码、请求方法等),而业务逻辑数据更适合放在自定义Span中。
解决方案
方案一:使用Fetch插件的自定义属性回调
OpenTelemetry-JS的@opentelemetry/instrumentation-fetch插件提供了applyCustomAttributesOnSpan配置项:
import { FetchInstrumentation } from '@opentelemetry/instrumentation-fetch';
new FetchInstrumentation({
applyCustomAttributesOnSpan: (span, request, response) => {
if (request.method === 'POST' && request.url.includes('/graphql')) {
const body = JSON.parse(request.body?.toString() || '{}');
span.setAttribute('graphql.query', body.query);
}
}
});
注意事项:
- 回调执行时请求体可能尚未完全加载
- 需要处理可能的异常情况(如非JSON请求体)
- 建议只添加与协议相关的扩展属性
方案二:创建业务层Span(推荐)
更符合OpenTelemetry设计理念的做法是创建独立的业务Span:
const tracer = trace.getTracer('graphql-client');
async function queryGraphQL(query) {
return tracer.startActiveSpan('graphql.query', async (span) => {
try {
span.setAttribute('graphql.query', query);
const res = await fetch(GRAPHQL_URL, {
method: 'POST',
body: JSON.stringify({ query })
});
// 可以关联HTTP Span和业务Span
const otelContext = propagation.extract(context.active(), res.headers);
context.with(otelContext, () => { /* ... */ });
return await res.json();
} finally {
span.end();
}
});
}
这种方式的优势:
- 明确分离协议层和业务层监控
- 支持更复杂的业务属性记录
- 可以建立Span之间的父子关系
- 避免污染标准HTTP语义属性
最佳实践建议
- 分层监控:基础设施层(HTTP)和业务层分开监控
- 属性命名规范:自定义属性建议使用业务域前缀(如
graphql.) - 性能考量:避免在Span中记录过大文本(如完整响应体)
- 错误处理:确保Span在任何情况下都能正确结束
通过合理设计监控点,开发者既能获得OpenTelemetry标准化的协议层监控,又能灵活记录业务关键信息,构建完整的应用可观测性体系。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1