OpenTelemetry-JS中如何为Fetch请求添加自定义Span属性
2025-06-27 00:37:20作者:尤峻淳Whitney
在OpenTelemetry-JS的实践中,开发者经常需要监控前端应用的网络请求行为。当使用浏览器原生的Fetch API时,OpenTelemetry会自动创建对应的Span记录请求过程,但有时我们需要在这些Span中添加业务相关的自定义属性(例如GraphQL查询语句)。
核心问题分析
默认情况下,Fetch请求的Span会在HTTP请求完成时立即结束(遵循HTTP语义约定)。这意味着在常见的异步处理模式中:
const res = await fetch(url); // Span在此阶段已结束
processResponse(res); // 此时已无法修改Span属性
这种设计符合OpenTelemetry的语义规范,因为HTTP Span应该只包含协议层面的信息(如状态码、请求方法等),而业务逻辑数据更适合放在自定义Span中。
解决方案
方案一:使用Fetch插件的自定义属性回调
OpenTelemetry-JS的@opentelemetry/instrumentation-fetch
插件提供了applyCustomAttributesOnSpan
配置项:
import { FetchInstrumentation } from '@opentelemetry/instrumentation-fetch';
new FetchInstrumentation({
applyCustomAttributesOnSpan: (span, request, response) => {
if (request.method === 'POST' && request.url.includes('/graphql')) {
const body = JSON.parse(request.body?.toString() || '{}');
span.setAttribute('graphql.query', body.query);
}
}
});
注意事项:
- 回调执行时请求体可能尚未完全加载
- 需要处理可能的异常情况(如非JSON请求体)
- 建议只添加与协议相关的扩展属性
方案二:创建业务层Span(推荐)
更符合OpenTelemetry设计理念的做法是创建独立的业务Span:
const tracer = trace.getTracer('graphql-client');
async function queryGraphQL(query) {
return tracer.startActiveSpan('graphql.query', async (span) => {
try {
span.setAttribute('graphql.query', query);
const res = await fetch(GRAPHQL_URL, {
method: 'POST',
body: JSON.stringify({ query })
});
// 可以关联HTTP Span和业务Span
const otelContext = propagation.extract(context.active(), res.headers);
context.with(otelContext, () => { /* ... */ });
return await res.json();
} finally {
span.end();
}
});
}
这种方式的优势:
- 明确分离协议层和业务层监控
- 支持更复杂的业务属性记录
- 可以建立Span之间的父子关系
- 避免污染标准HTTP语义属性
最佳实践建议
- 分层监控:基础设施层(HTTP)和业务层分开监控
- 属性命名规范:自定义属性建议使用业务域前缀(如
graphql.
) - 性能考量:避免在Span中记录过大文本(如完整响应体)
- 错误处理:确保Span在任何情况下都能正确结束
通过合理设计监控点,开发者既能获得OpenTelemetry标准化的协议层监控,又能灵活记录业务关键信息,构建完整的应用可观测性体系。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511