OpenTelemetry-JS中如何为Fetch请求添加自定义Span属性
2025-06-27 18:36:12作者:尤峻淳Whitney
在OpenTelemetry-JS的实践中,开发者经常需要监控前端应用的网络请求行为。当使用浏览器原生的Fetch API时,OpenTelemetry会自动创建对应的Span记录请求过程,但有时我们需要在这些Span中添加业务相关的自定义属性(例如GraphQL查询语句)。
核心问题分析
默认情况下,Fetch请求的Span会在HTTP请求完成时立即结束(遵循HTTP语义约定)。这意味着在常见的异步处理模式中:
const res = await fetch(url); // Span在此阶段已结束
processResponse(res); // 此时已无法修改Span属性
这种设计符合OpenTelemetry的语义规范,因为HTTP Span应该只包含协议层面的信息(如状态码、请求方法等),而业务逻辑数据更适合放在自定义Span中。
解决方案
方案一:使用Fetch插件的自定义属性回调
OpenTelemetry-JS的@opentelemetry/instrumentation-fetch插件提供了applyCustomAttributesOnSpan配置项:
import { FetchInstrumentation } from '@opentelemetry/instrumentation-fetch';
new FetchInstrumentation({
applyCustomAttributesOnSpan: (span, request, response) => {
if (request.method === 'POST' && request.url.includes('/graphql')) {
const body = JSON.parse(request.body?.toString() || '{}');
span.setAttribute('graphql.query', body.query);
}
}
});
注意事项:
- 回调执行时请求体可能尚未完全加载
- 需要处理可能的异常情况(如非JSON请求体)
- 建议只添加与协议相关的扩展属性
方案二:创建业务层Span(推荐)
更符合OpenTelemetry设计理念的做法是创建独立的业务Span:
const tracer = trace.getTracer('graphql-client');
async function queryGraphQL(query) {
return tracer.startActiveSpan('graphql.query', async (span) => {
try {
span.setAttribute('graphql.query', query);
const res = await fetch(GRAPHQL_URL, {
method: 'POST',
body: JSON.stringify({ query })
});
// 可以关联HTTP Span和业务Span
const otelContext = propagation.extract(context.active(), res.headers);
context.with(otelContext, () => { /* ... */ });
return await res.json();
} finally {
span.end();
}
});
}
这种方式的优势:
- 明确分离协议层和业务层监控
- 支持更复杂的业务属性记录
- 可以建立Span之间的父子关系
- 避免污染标准HTTP语义属性
最佳实践建议
- 分层监控:基础设施层(HTTP)和业务层分开监控
- 属性命名规范:自定义属性建议使用业务域前缀(如
graphql.) - 性能考量:避免在Span中记录过大文本(如完整响应体)
- 错误处理:确保Span在任何情况下都能正确结束
通过合理设计监控点,开发者既能获得OpenTelemetry标准化的协议层监控,又能灵活记录业务关键信息,构建完整的应用可观测性体系。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895