OpenTelemetry-js 中如何正确设置活动 Span 的实践指南
在分布式追踪系统中,Span 是表示单个操作的基本单元。OpenTelemetry-js 提供了强大的 API 来创建和管理 Span,但很多开发者在实际应用中会遇到如何正确设置活动 Span 的问题。本文将深入探讨这个问题,并提供最佳实践方案。
核心问题分析
在 OpenTelemetry-js 应用中,开发者经常会遇到 trace.getActiveSpan() 返回 undefined 的情况。这通常是由于上下文管理器的配置不当导致的。上下文管理器负责维护当前执行上下文中的 Span 状态,是 OpenTelemetry 能够追踪调用链的关键组件。
正确的 SDK 初始化方式
初始化 OpenTelemetry NodeSDK 时,关于上下文管理器的配置有以下要点:
-
自动初始化:如果不显式提供上下文管理器,NodeSDK 会自动创建并启用一个 AsyncHooksContextManager。这是推荐的做法,因为 SDK 会处理好所有内部细节。
-
手动配置:如果确实需要自定义上下文管理器,应该在 NodeSDK 构造函数中直接提供,而不是在初始化后单独设置。双重初始化会导致不可预测的行为。
最佳实践代码示例
以下是推荐的 Fastify 集成方案:
// 正确的 SDK 初始化
const sdk = new NodeSDK({
resource: new Resource({
[SemanticResourceAttributes.SERVICE_NAME]: `your-service-name`,
}),
traceExporter: new OTLPTraceExporter()
});
sdk.start();
// Fastify 集成
server.addHook("onRequest", async (req, res) => {
return tracer.startActiveSpan(req.routerPath, (span) => {
span.setAttributes({
hostname: req.hostname,
path: req.routerPath,
method: req.method,
ip: req.ip,
});
res.raw.on("close", () => {
span.end();
});
// 确保返回 Promise 以维持异步上下文
return Promise.resolve();
});
});
关键注意事项
-
上下文保持:确保所有异步操作都在
startActiveSpan回调中执行,这样才能保持上下文链。 -
Promise 处理:在异步函数中,必须正确处理 Promise 链,否则会导致上下文丢失。
-
Span 生命周期:确保每个创建的 Span 都会被正确结束,避免内存泄漏。
-
错误处理:考虑添加适当的错误处理逻辑,确保即使请求处理出错,Span 也能被正确结束并记录错误信息。
常见问题排查
如果仍然遇到活动 Span 不可见的问题,可以检查以下几点:
- 确认 SDK 初始化成功且没有错误
- 验证是否在正确的异步上下文中访问活动 Span
- 检查是否有其他中间件可能干扰了 OpenTelemetry 的上下文传播
- 考虑增加日志输出,跟踪 Span 的创建和结束过程
通过遵循这些最佳实践,开发者可以确保 OpenTelemetry-js 在 Fastify 或其他 Node.js 框架中正确追踪请求链路,为分布式系统提供可靠的观测能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00