Graph U-Nets 开源项目教程
1. 项目介绍
Graph U-Nets 是一个基于 PyTorch 实现的图神经网络模型,专门用于图数据的表示学习和处理。该项目由 Hongyang Gao 和 Shuiwang Ji 开发,旨在解决传统卷积神经网络在处理图数据时面临的挑战。Graph U-Nets 通过引入图池化(gPool)和图反池化(gUnpool)操作,构建了一个类似于 U-Net 的编码器-解码器架构,适用于节点分类和图分类任务。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 PyTorch。然后,克隆项目并安装所需的依赖:
git clone https://github.com/HongyangGao/gunet.git
cd gunet
pip install -r requirements.txt
运行示例
项目提供了一个脚本 run_GNN.sh,用于在指定数据集上运行模型。以下是一个示例命令,用于在 DD 数据集上进行 10 折交叉验证:
./run_GNN.sh DD 0 0
其中,DD 是数据集名称,0 表示使用第 1 折数据,第二个 0 表示使用 GPU #0。
3. 应用案例和最佳实践
节点分类
Graph U-Nets 在节点分类任务中表现出色。例如,在蛋白质结构数据集(PROTEINS)上,Graph U-Nets 的准确率达到了 78.7 ± 4.2%,显著优于其他基线模型。
图分类
在图分类任务中,Graph U-Nets 同样表现优异。例如,在社交网络数据集(IMDBMULTI)上,Graph U-Nets 的准确率达到了 56.7 ± 2.9%,超过了许多现有的图神经网络模型。
最佳实践
- 数据预处理:确保图数据的格式符合项目要求,参考
data/README.md文件。 - 超参数调优:根据具体任务调整模型的超参数,如学习率、批量大小等。
- 模型评估:使用交叉验证方法评估模型性能,确保结果的可靠性。
4. 典型生态项目
PyTorch Geometric
PyTorch Geometric 是一个用于处理图数据的 PyTorch 扩展库,提供了丰富的图神经网络模型和工具。Graph U-Nets 可以与 PyTorch Geometric 结合使用,进一步提升图数据的处理能力。
DGL (Deep Graph Library)
DGL 是另一个流行的图神经网络库,支持多种图神经网络模型和算法。Graph U-Nets 可以在 DGL 框架下进行实现和优化,适用于大规模图数据的处理。
NetworkX
NetworkX 是一个用于复杂网络分析的 Python 库,提供了图的创建、操作和分析功能。Graph U-Nets 可以与 NetworkX 结合,用于图数据的预处理和可视化。
通过这些生态项目的结合,Graph U-Nets 可以在更广泛的图数据处理任务中发挥作用,提供更强大的功能和性能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00