Graph U-Nets 开源项目教程
1. 项目介绍
Graph U-Nets 是一个基于 PyTorch 实现的图神经网络模型,专门用于图数据的表示学习和处理。该项目由 Hongyang Gao 和 Shuiwang Ji 开发,旨在解决传统卷积神经网络在处理图数据时面临的挑战。Graph U-Nets 通过引入图池化(gPool)和图反池化(gUnpool)操作,构建了一个类似于 U-Net 的编码器-解码器架构,适用于节点分类和图分类任务。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 PyTorch。然后,克隆项目并安装所需的依赖:
git clone https://github.com/HongyangGao/gunet.git
cd gunet
pip install -r requirements.txt
运行示例
项目提供了一个脚本 run_GNN.sh,用于在指定数据集上运行模型。以下是一个示例命令,用于在 DD 数据集上进行 10 折交叉验证:
./run_GNN.sh DD 0 0
其中,DD 是数据集名称,0 表示使用第 1 折数据,第二个 0 表示使用 GPU #0。
3. 应用案例和最佳实践
节点分类
Graph U-Nets 在节点分类任务中表现出色。例如,在蛋白质结构数据集(PROTEINS)上,Graph U-Nets 的准确率达到了 78.7 ± 4.2%,显著优于其他基线模型。
图分类
在图分类任务中,Graph U-Nets 同样表现优异。例如,在社交网络数据集(IMDBMULTI)上,Graph U-Nets 的准确率达到了 56.7 ± 2.9%,超过了许多现有的图神经网络模型。
最佳实践
- 数据预处理:确保图数据的格式符合项目要求,参考
data/README.md文件。 - 超参数调优:根据具体任务调整模型的超参数,如学习率、批量大小等。
- 模型评估:使用交叉验证方法评估模型性能,确保结果的可靠性。
4. 典型生态项目
PyTorch Geometric
PyTorch Geometric 是一个用于处理图数据的 PyTorch 扩展库,提供了丰富的图神经网络模型和工具。Graph U-Nets 可以与 PyTorch Geometric 结合使用,进一步提升图数据的处理能力。
DGL (Deep Graph Library)
DGL 是另一个流行的图神经网络库,支持多种图神经网络模型和算法。Graph U-Nets 可以在 DGL 框架下进行实现和优化,适用于大规模图数据的处理。
NetworkX
NetworkX 是一个用于复杂网络分析的 Python 库,提供了图的创建、操作和分析功能。Graph U-Nets 可以与 NetworkX 结合,用于图数据的预处理和可视化。
通过这些生态项目的结合,Graph U-Nets 可以在更广泛的图数据处理任务中发挥作用,提供更强大的功能和性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00