探索图神经网络的新高度:Graph U-Nets
2024-09-17 11:01:45作者:房伟宁
项目介绍
Graph U-Nets 是一个基于 PyTorch 的开源项目,由 Iowa State University 的 Hongyang Gao 和 Texas A&M University 的 Shuiwang Ji 共同开发。该项目实现了图神经网络(Graph Neural Networks, GNNs)中的 U-Net 架构,专门用于处理图结构数据。Graph U-Nets 通过引入图池化(Graph Pooling)和图反池化(Graph Unpooling)层,有效地解决了图数据中的特征提取和结构保留问题。
项目技术分析
图池化层(Graph Pooling Layer)
图池化层是 Graph U-Nets 的核心组件之一,它通过选择性地保留图中的重要节点,从而实现图的降维。这种池化方式不仅减少了计算复杂度,还保留了图的关键结构信息。
图反池化层(Graph Unpooling Layer)
图反池化层与图池化层相对应,它通过恢复被池化掉的节点,将图的结构还原到更高维度。这种机制使得模型能够在不同层次上捕捉图的细节信息。
图 U-Net 架构
Graph U-Nets 的整体架构类似于传统的 U-Net,通过交替使用图池化层和图反池化层,模型能够在不同尺度上捕捉图的特征。这种多层次的特征提取方式使得 Graph U-Nets 在处理复杂图数据时表现出色。
项目及技术应用场景
Graph U-Nets 在多个领域具有广泛的应用前景,特别是在需要处理图结构数据的场景中:
- 生物信息学:用于蛋白质结构预测、药物分子设计等。
- 社交网络分析:用于社区检测、用户行为预测等。
- 推荐系统:用于基于用户-物品图的推荐算法。
- 计算机视觉:用于图像分割、场景理解等。
项目特点
- 高效性:通过图池化和反池化层,Graph U-Nets 能够在保持高精度的同时,显著降低计算复杂度。
- 灵活性:项目提供了灵活的接口,用户可以根据自己的需求定制图池化和反池化层。
- 易用性:项目提供了详细的安装和使用说明,用户可以轻松上手。
- 高性能:在多个基准数据集上,Graph U-Nets 的表现优于现有的图神经网络模型,如 PSCN、DIFFPOOL、SAGPool 和 GIN。
结语
Graph U-Nets 为图神经网络领域带来了新的突破,它不仅在理论上有创新,在实际应用中也表现出色。无论你是研究者还是开发者,Graph U-Nets 都值得你深入探索和使用。快来体验 Graph U-Nets 带来的强大功能吧!
参考文献
如果你觉得这个项目对你有帮助,请引用我们的论文:
@inproceedings{gao2019graph,
title={Graph U-Nets},
author={Gao, Hongyang and Ji, Shuiwang},
booktitle={International Conference on Machine Learning},
pages={2083--2092},
year={2019}
}
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210