Pigsty v3.2.2发布:全面支持Omnigres与390个PostgreSQL扩展
Pigsty是一款开源的PostgreSQL数据库管理平台,它通过提供完整的工具链和自动化部署能力,让用户可以轻松构建、管理和监控PostgreSQL数据库环境。最新发布的v3.2.2版本带来了多项重要更新,特别是在扩展支持和功能增强方面。
Omnigres全面支持
本次更新的亮点之一是新增了对Omnigres的完整支持。Omnigres是一个将PostgreSQL转变为全功能应用平台的创新项目,它允许开发者直接在数据库内部构建完整的Web应用。Pigsty v3.2.2集成了Omnigres及其33个相关扩展,为用户提供了开箱即用的PostgreSQL应用开发平台。
Omnigres的加入意味着开发者现在可以在Pigsty环境中:
- 直接在PostgreSQL中处理HTTP请求
- 构建完整的Web应用后端
- 实现服务器端渲染
- 开发实时应用
新增扩展支持
除了Omnigres外,v3.2.2还新增了多个实用的PostgreSQL扩展:
-
pg_mooncake:这个扩展将DuckDB的功能引入PostgreSQL,为用户提供了轻量级分析数据库的能力,特别适合需要快速分析查询的场景。
-
pg_xxhash:一个高效的哈希算法实现,为数据分片和一致性哈希等场景提供支持。
-
timescaledb_toolkit:这是TimescaleDB的补充工具包,增强了时间序列数据分析能力。
-
pg_xenophile:专注于地理空间数据处理的扩展。
-
pg_drop_events:帮助监控和管理数据库中的DROP操作。
-
pg_incremental:为增量数据处理提供专门支持。
重要扩展更新
v3.2.2还对多个已有扩展进行了版本升级:
- Citus升级至13.0.0版本,新增了对即将发布的PostgreSQL 17的支持。
- pgml机器学习扩展升级至2.10.0,增强了数据库内机器学习能力。
- pg_extra_time升级至2.0.0,提供了更丰富的时间处理功能。
- pg_vectorize升级至0.20.0,改进了向量化操作性能。
- pg_search升级至0.14.1,优化了全文搜索体验。
- pg_analytics升级至0.3.0,增强了分析查询能力。
核心功能改进
在数据库核心功能方面,v3.2.2也带来了多项重要更新:
-
IvorySQL升级:将兼容Oracle的IvorySQL升级至4.2版本,基于PostgreSQL 17.2。
-
PolarDB支持扩展:新增了对Arm64架构和Debian系统的PolarDB内核支持,为用户提供了更多部署选择。
-
基础设施增强:默认包含了certbot和certbot-nginx工具,简化了SSL证书管理流程。
-
连接池优化:将pgbouncer的max_prepared_statements参数默认值提升至256,改善了高并发场景下的性能表现。
-
包管理简化:移除了pgxxx-citus包别名,并默认隐藏了pgxxx-olap扩展类别,使扩展管理界面更加清晰。
总结
Pigsty v3.2.2通过引入Omnigres支持和大量新扩展,进一步巩固了其作为PostgreSQL全功能管理平台的地位。无论是需要构建完整应用的开发者,还是专注于数据分析的专业人士,都能从这个版本中找到有价值的改进。特别是对新兴技术如Omnigres和DuckDB的支持,展现了Pigsty项目紧跟技术发展趋势的承诺。
对于现有用户,建议评估新扩展和功能是否能满足业务需求,特别是那些需要构建数据库内应用或进行高级数据分析的场景。新用户可以借助这个版本更轻松地搭建功能全面的PostgreSQL环境,而无需花费大量时间在扩展安装和配置上。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00