Apache Beam 技术文档
2024-12-23 02:49:19作者:沈韬淼Beryl
1. 安装指南
Java SDK 安装
使用 Maven 进行依赖管理:
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-core</artifactId>
<version>{{latest_version}}</version>
</dependency>
使用 Gradle 进行依赖管理:
dependencies {
implementation 'org.apache.beam:beam-sdks-java-core:{{latest_version}}'
}
Python SDK 安装
使用 pip 进行安装:
pip install apache-beam
Go SDK 安装
使用 go get 进行安装:
go get -u github.com/apache/beam/sdks/v2/go
2. 项目的使用说明
Apache Beam 是一个用于定义批处理和流处理数据并行处理管道的统一模型,同时提供了多种语言特定的 SDK 用于构建管道,以及运行在分布式处理后端的 Runner。
创建管道
在 Java 中,创建一个简单的管道:
public class MyPipeline {
public static void main(String[] args) throws Exception {
PipelineOptions options = PipelineOptionsFactory.fromArgs(args).create();
Pipeline p = Pipeline.create(options);
PCollection<String> lines = p.apply(Read.fromText("input.txt"));
PCollection<String> words = lines.apply(Split.byPattern("\\W+"));
PCollection<Long> wordCounts = words.apply(Count.byElement());
wordCounts.apply(Write.toText("output.txt"));
p.run().waitUntilFinish();
}
}
在 Python 中,创建一个简单的管道:
import apache_beam as beam
def split_words(text):
return text.split()
def count_words(element):
return (element, 1)
with beam.Pipeline() as p:
lines = (p | 'ReadLines' >> beam.io.ReadFromText('input.txt'))
words = (lines | 'SplitWords' >> beam.Map(split_words))
word_counts = (words | 'CountWords' >> beam.CombineGlobally(count_words).without_keys())
word_counts | 'WriteCounts' >> beam.io.WriteToText('output.txt')
运行管道
使用 DirectRunner 在本地机器上运行管道:
mvn compile
java -jar target/MyPipeline-1.0-SNAPSHOT.jar --runner=DirectRunner
使用 DataflowRunner 在 Google Cloud Dataflow 上运行管道:
mvn compile
java -jar target/MyPipeline-1.0-SNAPSHOT.jar --runner=DataflowRunner
3. 项目API使用文档
Apache Beam 提供了丰富的 API 用于构建和运行管道。以下是一些常用的 API:
PCollection
PCollection 代表一个数据集合,可以是有限的或无限的。
PCollection<String> lines = p.apply(Read.fromText("input.txt"));
PTransform
PTransform 代表一个计算,用于将输入的 PCollection 转换为输出的 PCollection。
PCollection<String> words = lines.apply(Split.byPattern("\\W+"));
Pipeline
Pipeline 管理一个有向无环图,包含 PTransform 和 PCollection,准备执行。
Pipeline p = Pipeline.create(options);
PipelineRunner
PipelineRunner 指定管道应该在哪里以及如何执行。
p.run().waitUntilFinish();
4. 项目安装方式
请参考上述的安装指南,选择适合您项目的 SDK 语言和版本进行安装。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355