Visual-RFT项目中的split_with_sizes错误分析与解决方案
2025-07-10 00:38:20作者:段琳惟
问题背景
在Visual-RFT项目使用过程中,部分开发者遇到了一个RuntimeError错误,错误信息显示为"split_with_sizes expects split_sizes to sum exactly to 1 (input tensor's size at dimension 0), but got split_sizes=[1944]"。这个错误出现在模型训练过程中,特别是在处理视觉特征时。
错误原因分析
该错误的根本原因在于张量维度不匹配问题。具体来说:
- 在transformers/models/qwen2_vl/modeling_qwen2_vl.py文件中,代码尝试使用torch.split函数对一个形状为[1, 1944, w]的张量x进行分割
- 分割参数lengths被设置为[1944]
- 但torch.split函数要求分割尺寸的总和必须等于输入张量在分割维度上的大小
- 由于输入张量在第一维的大小是1,而lengths总和为1944,因此引发了错误
解决方案探索
经过技术分析,我们找到了两种可行的解决方案:
方案一:修改modeling_qwen2_vl.py文件
在modeling_qwen2_vl.py文件的第1919行附近,将lengths的计算方式修改为:
lengths = [1] # 替代原有的计算方式
这种修改直接解决了维度不匹配的问题,允许训练继续进行。但需要注意的是,这种修改可能会影响模型对多样本批处理的支持。
方案二:修复grpo_trainer.py文件
更根本的解决方案是修复src/open_r1/trainer/grpo_trainer.py文件中的问题:
- 注释掉第383行对pixel_values的维度扩展:
# prompt_inputs['pixel_values'] = prompt_inputs['pixel_values'][None]
- 将第401行的pixel_values处理方式恢复为原始实现:
pixel_values = prompt_inputs["pixel_values"].repeat(self.num_generations, 1)
这种方案更贴近项目的原始设计意图,特别是在处理批量数据时表现更好。
技术原理深入
这个问题的本质在于视觉特征处理流程中的维度管理。在深度学习框架中,张量维度的正确处理至关重要:
- 原始实现中,pixel_values被错误地增加了一个维度,导致后续处理时维度不匹配
- 正确的处理应该保持张量的原始维度结构,仅通过repeat操作扩展样本数量
- 维度错误会级联传播,最终在模型的特征分割步骤触发异常
实际应用验证
经过实际测试,特别是针对细粒度分类任务(如aircraft数据集上的4-shot学习),方案二能够有效解决问题并保持模型性能。这表明:
- 维度处理的正确性直接影响模型训练稳定性
- 原始实现中的维度扩展可能是在特定条件下的临时解决方案
- 恢复标准处理方式更符合模型的预期行为
最佳实践建议
基于项目经验,我们建议开发者:
- 优先采用方案二进行修复,它更符合模型设计的初衷
- 在修改前备份原始文件,便于问题排查和恢复
- 对于不同的任务场景,注意检查输入张量的维度是否符合预期
- 当遇到类似维度不匹配错误时,可以逐层检查张量形状变化
总结
Visual-RFT项目中的这个split_with_sizes错误揭示了深度学习项目中维度管理的重要性。通过分析错误根源并比较不同解决方案,我们不仅解决了眼前的问题,也加深了对模型数据处理流程的理解。正确的维度处理是确保模型训练成功的关键因素之一,开发者在实现自定义模型组件时应特别注意这一点。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249