Visual-RFT项目中的split_with_sizes错误分析与解决方案
2025-07-10 19:44:06作者:段琳惟
问题背景
在Visual-RFT项目使用过程中,部分开发者遇到了一个RuntimeError错误,错误信息显示为"split_with_sizes expects split_sizes to sum exactly to 1 (input tensor's size at dimension 0), but got split_sizes=[1944]"。这个错误出现在模型训练过程中,特别是在处理视觉特征时。
错误原因分析
该错误的根本原因在于张量维度不匹配问题。具体来说:
- 在transformers/models/qwen2_vl/modeling_qwen2_vl.py文件中,代码尝试使用torch.split函数对一个形状为[1, 1944, w]的张量x进行分割
- 分割参数lengths被设置为[1944]
- 但torch.split函数要求分割尺寸的总和必须等于输入张量在分割维度上的大小
- 由于输入张量在第一维的大小是1,而lengths总和为1944,因此引发了错误
解决方案探索
经过技术分析,我们找到了两种可行的解决方案:
方案一:修改modeling_qwen2_vl.py文件
在modeling_qwen2_vl.py文件的第1919行附近,将lengths的计算方式修改为:
lengths = [1] # 替代原有的计算方式
这种修改直接解决了维度不匹配的问题,允许训练继续进行。但需要注意的是,这种修改可能会影响模型对多样本批处理的支持。
方案二:修复grpo_trainer.py文件
更根本的解决方案是修复src/open_r1/trainer/grpo_trainer.py文件中的问题:
- 注释掉第383行对pixel_values的维度扩展:
# prompt_inputs['pixel_values'] = prompt_inputs['pixel_values'][None]
- 将第401行的pixel_values处理方式恢复为原始实现:
pixel_values = prompt_inputs["pixel_values"].repeat(self.num_generations, 1)
这种方案更贴近项目的原始设计意图,特别是在处理批量数据时表现更好。
技术原理深入
这个问题的本质在于视觉特征处理流程中的维度管理。在深度学习框架中,张量维度的正确处理至关重要:
- 原始实现中,pixel_values被错误地增加了一个维度,导致后续处理时维度不匹配
- 正确的处理应该保持张量的原始维度结构,仅通过repeat操作扩展样本数量
- 维度错误会级联传播,最终在模型的特征分割步骤触发异常
实际应用验证
经过实际测试,特别是针对细粒度分类任务(如aircraft数据集上的4-shot学习),方案二能够有效解决问题并保持模型性能。这表明:
- 维度处理的正确性直接影响模型训练稳定性
- 原始实现中的维度扩展可能是在特定条件下的临时解决方案
- 恢复标准处理方式更符合模型的预期行为
最佳实践建议
基于项目经验,我们建议开发者:
- 优先采用方案二进行修复,它更符合模型设计的初衷
- 在修改前备份原始文件,便于问题排查和恢复
- 对于不同的任务场景,注意检查输入张量的维度是否符合预期
- 当遇到类似维度不匹配错误时,可以逐层检查张量形状变化
总结
Visual-RFT项目中的这个split_with_sizes错误揭示了深度学习项目中维度管理的重要性。通过分析错误根源并比较不同解决方案,我们不仅解决了眼前的问题,也加深了对模型数据处理流程的理解。正确的维度处理是确保模型训练成功的关键因素之一,开发者在实现自定义模型组件时应特别注意这一点。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
54
469

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
880
519

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
181
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
613
60