Azure CLI机器学习扩展安装时的校验和错误分析与解决方案
2025-06-15 06:49:44作者:田桥桑Industrious
问题背景
在使用Azure CLI的机器学习扩展(ml)时,部分用户遇到了校验和(checksum)不匹配的错误。该问题主要出现在尝试安装或更新ml扩展时,系统提示"An error occurred whilst updating. The checksum of the extension does not match the expected value"的错误信息。
错误现象
当用户执行以下命令时会出现此问题:
az extension add -n ml
az extension update -n ml
从调试日志中可以看到,系统下载了ml-2.36.1版本的扩展包,但计算得到的校验和(067e5dad4052820669427d7903aef1dd2aba3f6a26433b87f2b2aec86d8e3512)与预期值(3e335b97b07e859ae13ee6cc2b727d4ac14ab16d9790e15f59d743c0924c84b0)不一致,导致安装失败。
问题原因
校验和错误通常表明下载的扩展包与官方发布的版本存在差异,可能原因包括:
- 扩展包在发布后内容被修改但校验和未同步更新
- 下载过程中网络问题导致文件损坏
- 服务器端缓存了旧版本的文件
在本次案例中,问题主要出在ml扩展2.36.1版本上,该版本的校验信息与实际文件不匹配。
解决方案
临时解决方案
在官方修复问题前,可以采用以下临时解决方案:
- 指定安装前一个稳定版本:
az extension add -n ml --version 2.36.0
- 或者安装更新的2.36.2版本:
az extension add -n ml --version 2.36.2
长期解决方案
Azure CLI团队已经确认并修复了此问题:
- 2.36.1和2.36.2版本已经过验证可以正常工作
- 相关修复已通过PR合并到主分支
最佳实践建议
- 定期更新Azure CLI到最新版本,避免使用过旧版本
- 安装扩展时如遇问题,可尝试指定已知稳定的版本号
- 对于生产环境,建议固定扩展版本以避免意外更新带来的兼容性问题
- 遇到校验和错误时,可先尝试清除本地缓存后重新安装
总结
校验和错误是软件包管理中常见的安全验证机制,虽然会给用户带来不便,但能有效确保安装的扩展未被篡改。Azure CLI团队对此类问题响应迅速,通常会很快发布修复版本。用户在遇到类似问题时,可先尝试安装其他已知稳定版本作为临时解决方案,同时关注官方更新。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
306
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882