Visual-RFT项目中分类模型置信度输出的技术探讨
2025-07-10 09:54:17作者:谭伦延
在Visual-RFT项目中,分类模型的置信度输出是一个值得深入探讨的技术话题。与检测模型不同,标准的分类模型训练流程通常不强制要求输出置信度分数,但这并不意味着无法实现这一功能。
分类模型置信度的实现方式
分类模型本质上已经包含了置信度信息,只是通常只输出最终的分类结果。实际上,在softmax层输出的概率分布就可以视为各类别的置信度分数。要实现置信度输出功能,开发者需要:
- 修改模型输出层,使其不仅输出预测类别,同时保留各类别的概率值
- 调整训练数据格式,要求模型在训练时学习输出这些概率信息
奖励函数的调整策略
当分类结果带有置信度信息后,奖励函数(Reward Function)的计算可以更加精细化。传统的准确率奖励(accuracy_reward)仅考虑预测是否正确,而改进后的版本可以考虑:
- 正确分类且高置信度的样本应获得更高奖励
- 正确分类但低置信度的样本奖励应适当降低
- 错误分类但低置信度的样本惩罚可以减轻
- 错误分类却高置信度的样本应受到更严厉惩罚
这种改进能使模型在学习过程中不仅关注分类准确性,还会主动优化其置信度校准,使预测结果更加可靠。
实际应用中的注意事项
实现这一改进时需要注意:
- 置信度校准问题:确保模型输出的置信度与实际准确率相符
- 奖励平衡:避免模型为了追求高置信度而变得过于保守
- 训练稳定性:引入连续值奖励可能增加训练难度,需要适当调整学习率等参数
通过合理实现分类模型的置信度输出并相应调整奖励机制,可以显著提升Visual-RFT项目中分类任务模型的性能和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355