OpenCompass多卡推理验证Lawbench时2-1子任务缓存文件丢失问题分析
问题背景
在使用OpenCompass评估框架对Qwen2-7B-Instruct模型进行Lawbench法律基准测试时,当采用多卡(4张NVIDIA RTX 3090)并行推理时,发现2-1子任务(document_proofreading文档校对)的评估过程出现异常。具体表现为评估过程中无法找到关键的缓存文件,导致该子任务的评估结果无法正常输出。
错误现象
从错误日志中可以清晰地看到两个关键问题:
-
字符元数据文件缺失:系统在尝试加载
char_meta.txt文件时失败,该文件是Lawbench评估过程中用于字符相似度计算的重要资源文件。 -
临时M2文件缺失:在评估过程中生成的临时M2格式文件(
/tmp/tmpf8i3a78z.m2)无法找到,这是用于存储模型输出与参考答案对比的中间文件。
根本原因分析
经过深入分析,这个问题可能由以下几个因素共同导致:
-
多进程并行处理冲突:当使用多卡并行推理时,不同进程可能同时尝试访问或创建相同的临时文件,导致文件创建或访问冲突。
-
文件路径解析问题:Lawbench评估脚本中使用的相对路径解析方式在多进程环境下可能不稳定,特别是在Python包安装路径和临时目录之间跳转时。
-
资源文件部署不完整:
char_meta.txt作为评估的关键资源文件,可能在OpenCompass安装过程中未被正确部署到指定位置。
解决方案
针对这个问题,推荐以下几种解决方案:
-
使用--reuse参数重新运行:这是最简单直接的解决方案,通过重用已生成的部分结果,避免重复执行已完成的任务。
-
单卡顺序执行:如果时间允许,可以尝试使用单卡顺序执行,避免多进程间的文件访问冲突。
-
手动补全资源文件:可以手动将缺失的
char_meta.txt文件放置到正确位置,确保评估脚本能够找到它。 -
修改评估脚本:对于长期使用,可以考虑修改Lawbench的评估脚本,使其能够更稳定地处理多进程环境下的文件操作。
技术细节补充
Lawbench的2-1子任务(文档校对)评估过程实际上包含以下几个关键步骤:
-
字符级比对:使用
char_meta.txt中的字符相似度信息进行精细化的文本比对。 -
M2格式转换:将模型输出和参考答案转换为M2格式,这是一种用于语法错误检测的标准格式。
-
差异分析:通过比较两个M2文件的差异来计算最终的校对得分。
在多卡环境下,这些步骤可能因为进程同步问题而导致中间文件处理异常。特别是M2文件的生成和读取时机需要严格控制,否则就会出现文件未生成就被尝试读取的情况。
最佳实践建议
对于需要在多卡环境下运行OpenCompass评估的用户,建议:
-
监控临时文件:在执行过程中监控
/tmp目录下的临时文件状态,确保它们被正确创建和使用。 -
分阶段执行:对于大型评估任务,可以考虑分阶段执行,先完成推理部分,再单独执行评估部分。
-
日志记录:增加详细的日志记录,帮助定位多进程环境下的文件操作问题。
-
资源检查:在执行前检查所有必需的资源文件是否就位,特别是像
char_meta.txt这样的评估依赖文件。
通过以上分析和建议,希望能够帮助用户更好地在OpenCompass多卡环境下完成Lawbench等复杂基准测试的完整评估。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0135
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00