首页
/ 高分辨率乳腺癌筛查:多视角深度卷积神经网络

高分辨率乳腺癌筛查:多视角深度卷积神经网络

2024-09-21 07:22:40作者:裴麒琰

项目介绍

乳腺癌是全球女性最常见的恶性肿瘤之一,早期筛查和诊断对于提高治愈率和生存率至关重要。本项目基于深度学习技术,提供了一种高分辨率的乳腺癌筛查方法,通过多视角深度卷积神经网络(CNN)实现BI-RADS分类预测。该项目不仅提供了预训练的模型,还支持用户在标准筛查乳腺X光片上进行BI-RADS预测。

项目技术分析

本项目的技术核心在于多视角深度卷积神经网络的应用。具体来说,模型通过四个视角(L-CC, L-MLO, R-CC, R-MLO)的乳腺X光片进行训练和预测。每个视角的图像大小为2600x2000像素,确保了高分辨率的图像输入。模型在TensorFlow和PyTorch两个主流深度学习框架上均有实现,用户可以根据自己的需求选择合适的框架进行使用。

技术栈

  • Python 3.6:项目的主要编程语言。
  • TensorFlow 1.5.0PyTorch 0.4.0:深度学习框架支持。
  • NumPy 1.14.3SciPy 1.0.0:用于数值计算和科学计算。
  • Pillow 5.1.0:用于图像处理。

模型转换

项目中提供了TensorFlow和PyTorch两种格式的预训练模型。用户可以通过提供的脚本将TensorFlow模型转换为PyTorch模型,方便在不同框架间切换。

项目及技术应用场景

本项目适用于以下应用场景:

  1. 乳腺癌筛查:医疗机构可以通过本项目的高分辨率多视角CNN模型,对乳腺X光片进行自动筛查,提高筛查效率和准确性。
  2. 医学研究:研究人员可以利用本项目提供的模型和代码,进行乳腺癌相关的深度学习研究,探索更有效的筛查和诊断方法。
  3. 教育培训:医学院校和培训机构可以将本项目作为教学案例,帮助学生和医生理解深度学习在医学影像分析中的应用。

项目特点

  1. 高分辨率图像处理:模型支持2600x2000像素的高分辨率图像输入,确保了图像细节的完整性。
  2. 多视角分析:通过四个视角的图像进行分析,提高了预测的准确性和可靠性。
  3. 跨框架支持:模型在TensorFlow和PyTorch两个主流深度学习框架上均有实现,用户可以根据自己的技术栈选择合适的框架。
  4. 预训练模型:项目提供了预训练的模型,用户可以直接使用,无需从头开始训练。
  5. 灵活的配置选项:用户可以通过命令行参数灵活配置模型路径、设备类型(CPU/GPU)、GPU编号等,满足不同环境下的使用需求。

结语

本项目通过多视角深度卷积神经网络,为乳腺癌筛查提供了一种高效、准确的解决方案。无论是在医疗机构的实际应用,还是在医学研究和教育培训中,本项目都具有广泛的应用前景。欢迎广大用户和开发者使用并贡献代码,共同推动乳腺癌筛查技术的发展。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
519
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0