HierarchicalForecast 项目教程
2024-09-14 05:58:17作者:曹令琨Iris
项目介绍
HierarchicalForecast 是一个用于时间序列预测的开源 Python 库,专注于层次化预测(Hierarchical Forecasting)。层次化预测是指在具有层次结构的时间序列数据中进行预测,确保不同层次的预测结果保持一致性。HierarchicalForecast 提供了多种层次化预测方法,包括 BottomUp、TopDown、MiddleOut、MinTrace 和 ERM 等,适用于学术研究和工业应用。
项目快速启动
安装
首先,确保你已经安装了 Python 3.7 或更高版本。然后,你可以通过 pip 安装 HierarchicalForecast:
pip install hierarchicalforecast
快速示例
以下是一个简单的示例,展示如何使用 HierarchicalForecast 进行层次化预测:
import numpy as np
import pandas as pd
from hierarchicalforecast.core import HierarchicalReconciliation
from hierarchicalforecast.methods import BottomUp, TopDown, MiddleOut
from hierarchicalforecast.evaluation import HierarchicalEvaluation
from statsforecast.core import StatsForecast
from statsforecast.models import auto_arima, naive
from datasetsforecast.hierarchical import HierarchicalData
# 加载层次化数据集
Y_df, S, tags = HierarchicalData.load('TourismSmall')
Y_df['ds'] = pd.to_datetime(Y_df['ds'])
# 分割训练集和测试集
Y_df_test = Y_df.groupby('unique_id').tail(12)
Y_df_train = Y_df.drop(Y_df_test.index)
Y_df_test = Y_df_test.set_index('unique_id')
Y_df_train = Y_df_train.set_index('unique_id')
# 计算基础预测(非一致性)
fcst = StatsForecast(df=Y_df_train, models=[auto_arima, naive], freq='M', n_jobs=-1)
Y_hat_df = fcst.forecast(h=12)
# 层次化预测
reconcilers = [
BottomUp(),
TopDown(method='forecast_proportions'),
MiddleOut(level='Country/Purpose/State', top_down_method='forecast_proportions')
]
hrec = HierarchicalReconciliation(reconcilers=reconcilers)
Y_rec_df = hrec.reconcile(Y_hat_df, Y_df_train, S, tags)
# 评估
def mse(y, y_hat):
return np.mean((y - y_hat) ** 2)
evaluator = HierarchicalEvaluation(evaluators=[mse])
evaluator.evaluate(Y_h=Y_rec_df, Y_test=Y_df_test, tags=tags, benchmark='naive')
应用案例和最佳实践
应用案例
HierarchicalForecast 可以应用于多个领域,如零售业的销售预测、能源行业的需求预测、金融市场的风险预测等。在这些领域中,数据通常具有层次结构,例如不同地区、不同产品类别等。通过使用 HierarchicalForecast,可以确保不同层次的预测结果保持一致性,从而提高预测的准确性和可靠性。
最佳实践
- 数据预处理:在进行层次化预测之前,确保数据已经过适当的预处理,包括缺失值处理、异常值检测和数据标准化等。
- 模型选择:根据具体应用场景选择合适的基础预测模型和层次化预测方法。例如,对于短期预测,可以选择 ARIMA 模型;对于长期预测,可以选择 Prophet 模型。
- 模型评估:使用适当的评估指标(如 MSE、MAE 等)对预测结果进行评估,并根据评估结果调整模型参数和方法。
典型生态项目
HierarchicalForecast 作为一个专注于层次化预测的库,与其他时间序列预测库和工具形成了良好的生态系统。以下是一些典型的生态项目:
- StatsForecast:一个用于时间序列预测的 Python 库,提供了多种经典和现代的预测模型,如 ARIMA、ETS、Prophet 等。HierarchicalForecast 可以与 StatsForecast 结合使用,进行基础预测和层次化预测。
- Darts:一个用于时间序列预测和分析的 Python 库,支持多种模型和工具,包括 ARIMA、LSTM、Transformer 等。Darts 可以与 HierarchicalForecast 结合使用,进行更复杂的时间序列预测任务。
- PyCaret:一个用于自动化机器学习的 Python 库,支持多种任务,包括分类、回归、聚类等。PyCaret 可以与 HierarchicalForecast 结合使用,进行自动化的时间序列预测和层次化预测。
通过这些生态项目的结合,可以进一步提升时间序列预测的效率和准确性。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218