HierarchicalForecast 项目教程
2024-09-14 07:19:49作者:曹令琨Iris
项目介绍
HierarchicalForecast 是一个用于时间序列预测的开源 Python 库,专注于层次化预测(Hierarchical Forecasting)。层次化预测是指在具有层次结构的时间序列数据中进行预测,确保不同层次的预测结果保持一致性。HierarchicalForecast 提供了多种层次化预测方法,包括 BottomUp、TopDown、MiddleOut、MinTrace 和 ERM 等,适用于学术研究和工业应用。
项目快速启动
安装
首先,确保你已经安装了 Python 3.7 或更高版本。然后,你可以通过 pip 安装 HierarchicalForecast:
pip install hierarchicalforecast
快速示例
以下是一个简单的示例,展示如何使用 HierarchicalForecast 进行层次化预测:
import numpy as np
import pandas as pd
from hierarchicalforecast.core import HierarchicalReconciliation
from hierarchicalforecast.methods import BottomUp, TopDown, MiddleOut
from hierarchicalforecast.evaluation import HierarchicalEvaluation
from statsforecast.core import StatsForecast
from statsforecast.models import auto_arima, naive
from datasetsforecast.hierarchical import HierarchicalData
# 加载层次化数据集
Y_df, S, tags = HierarchicalData.load('TourismSmall')
Y_df['ds'] = pd.to_datetime(Y_df['ds'])
# 分割训练集和测试集
Y_df_test = Y_df.groupby('unique_id').tail(12)
Y_df_train = Y_df.drop(Y_df_test.index)
Y_df_test = Y_df_test.set_index('unique_id')
Y_df_train = Y_df_train.set_index('unique_id')
# 计算基础预测(非一致性)
fcst = StatsForecast(df=Y_df_train, models=[auto_arima, naive], freq='M', n_jobs=-1)
Y_hat_df = fcst.forecast(h=12)
# 层次化预测
reconcilers = [
BottomUp(),
TopDown(method='forecast_proportions'),
MiddleOut(level='Country/Purpose/State', top_down_method='forecast_proportions')
]
hrec = HierarchicalReconciliation(reconcilers=reconcilers)
Y_rec_df = hrec.reconcile(Y_hat_df, Y_df_train, S, tags)
# 评估
def mse(y, y_hat):
return np.mean((y - y_hat) ** 2)
evaluator = HierarchicalEvaluation(evaluators=[mse])
evaluator.evaluate(Y_h=Y_rec_df, Y_test=Y_df_test, tags=tags, benchmark='naive')
应用案例和最佳实践
应用案例
HierarchicalForecast 可以应用于多个领域,如零售业的销售预测、能源行业的需求预测、金融市场的风险预测等。在这些领域中,数据通常具有层次结构,例如不同地区、不同产品类别等。通过使用 HierarchicalForecast,可以确保不同层次的预测结果保持一致性,从而提高预测的准确性和可靠性。
最佳实践
- 数据预处理:在进行层次化预测之前,确保数据已经过适当的预处理,包括缺失值处理、异常值检测和数据标准化等。
- 模型选择:根据具体应用场景选择合适的基础预测模型和层次化预测方法。例如,对于短期预测,可以选择 ARIMA 模型;对于长期预测,可以选择 Prophet 模型。
- 模型评估:使用适当的评估指标(如 MSE、MAE 等)对预测结果进行评估,并根据评估结果调整模型参数和方法。
典型生态项目
HierarchicalForecast 作为一个专注于层次化预测的库,与其他时间序列预测库和工具形成了良好的生态系统。以下是一些典型的生态项目:
- StatsForecast:一个用于时间序列预测的 Python 库,提供了多种经典和现代的预测模型,如 ARIMA、ETS、Prophet 等。HierarchicalForecast 可以与 StatsForecast 结合使用,进行基础预测和层次化预测。
- Darts:一个用于时间序列预测和分析的 Python 库,支持多种模型和工具,包括 ARIMA、LSTM、Transformer 等。Darts 可以与 HierarchicalForecast 结合使用,进行更复杂的时间序列预测任务。
- PyCaret:一个用于自动化机器学习的 Python 库,支持多种任务,包括分类、回归、聚类等。PyCaret 可以与 HierarchicalForecast 结合使用,进行自动化的时间序列预测和层次化预测。
通过这些生态项目的结合,可以进一步提升时间序列预测的效率和准确性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355