首页
/ HierarchicalForecast 项目教程

HierarchicalForecast 项目教程

2024-09-14 08:09:00作者:曹令琨Iris

项目介绍

HierarchicalForecast 是一个用于时间序列预测的开源 Python 库,专注于层次化预测(Hierarchical Forecasting)。层次化预测是指在具有层次结构的时间序列数据中进行预测,确保不同层次的预测结果保持一致性。HierarchicalForecast 提供了多种层次化预测方法,包括 BottomUp、TopDown、MiddleOut、MinTrace 和 ERM 等,适用于学术研究和工业应用。

项目快速启动

安装

首先,确保你已经安装了 Python 3.7 或更高版本。然后,你可以通过 pip 安装 HierarchicalForecast:

pip install hierarchicalforecast

快速示例

以下是一个简单的示例,展示如何使用 HierarchicalForecast 进行层次化预测:

import numpy as np
import pandas as pd
from hierarchicalforecast.core import HierarchicalReconciliation
from hierarchicalforecast.methods import BottomUp, TopDown, MiddleOut
from hierarchicalforecast.evaluation import HierarchicalEvaluation
from statsforecast.core import StatsForecast
from statsforecast.models import auto_arima, naive
from datasetsforecast.hierarchical import HierarchicalData

# 加载层次化数据集
Y_df, S, tags = HierarchicalData.load('TourismSmall')
Y_df['ds'] = pd.to_datetime(Y_df['ds'])

# 分割训练集和测试集
Y_df_test = Y_df.groupby('unique_id').tail(12)
Y_df_train = Y_df.drop(Y_df_test.index)
Y_df_test = Y_df_test.set_index('unique_id')
Y_df_train = Y_df_train.set_index('unique_id')

# 计算基础预测(非一致性)
fcst = StatsForecast(df=Y_df_train, models=[auto_arima, naive], freq='M', n_jobs=-1)
Y_hat_df = fcst.forecast(h=12)

# 层次化预测
reconcilers = [
    BottomUp(),
    TopDown(method='forecast_proportions'),
    MiddleOut(level='Country/Purpose/State', top_down_method='forecast_proportions')
]
hrec = HierarchicalReconciliation(reconcilers=reconcilers)
Y_rec_df = hrec.reconcile(Y_hat_df, Y_df_train, S, tags)

# 评估
def mse(y, y_hat):
    return np.mean((y - y_hat) ** 2)

evaluator = HierarchicalEvaluation(evaluators=[mse])
evaluator.evaluate(Y_h=Y_rec_df, Y_test=Y_df_test, tags=tags, benchmark='naive')

应用案例和最佳实践

应用案例

HierarchicalForecast 可以应用于多个领域,如零售业的销售预测、能源行业的需求预测、金融市场的风险预测等。在这些领域中,数据通常具有层次结构,例如不同地区、不同产品类别等。通过使用 HierarchicalForecast,可以确保不同层次的预测结果保持一致性,从而提高预测的准确性和可靠性。

最佳实践

  1. 数据预处理:在进行层次化预测之前,确保数据已经过适当的预处理,包括缺失值处理、异常值检测和数据标准化等。
  2. 模型选择:根据具体应用场景选择合适的基础预测模型和层次化预测方法。例如,对于短期预测,可以选择 ARIMA 模型;对于长期预测,可以选择 Prophet 模型。
  3. 模型评估:使用适当的评估指标(如 MSE、MAE 等)对预测结果进行评估,并根据评估结果调整模型参数和方法。

典型生态项目

HierarchicalForecast 作为一个专注于层次化预测的库,与其他时间序列预测库和工具形成了良好的生态系统。以下是一些典型的生态项目:

  1. StatsForecast:一个用于时间序列预测的 Python 库,提供了多种经典和现代的预测模型,如 ARIMA、ETS、Prophet 等。HierarchicalForecast 可以与 StatsForecast 结合使用,进行基础预测和层次化预测。
  2. Darts:一个用于时间序列预测和分析的 Python 库,支持多种模型和工具,包括 ARIMA、LSTM、Transformer 等。Darts 可以与 HierarchicalForecast 结合使用,进行更复杂的时间序列预测任务。
  3. PyCaret:一个用于自动化机器学习的 Python 库,支持多种任务,包括分类、回归、聚类等。PyCaret 可以与 HierarchicalForecast 结合使用,进行自动化的时间序列预测和层次化预测。

通过这些生态项目的结合,可以进一步提升时间序列预测的效率和准确性。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
461
kernelkernel
deepin linux kernel
C
22
5
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.09 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
179
264
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
608
59
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4