Java Bloom Filter 技术文档
2024-12-24 12:43:17作者:明树来
1. 安装指南
1.1 通过 JAR 文件安装
- 从 GitHub 下载最新版本的
java-bloomfilter项目。 - 使用
ant命令编译项目:ant - 编译完成后,将生成的
dist/java-bloomfilter.jar文件添加到你的项目中。
1.2 通过源码集成
- 从 GitHub 下载
BloomFilter.java文件。 - 将
BloomFilter.java文件直接复制到你的项目中。 - 确保保留文件中的 LGPL 许可证注释,并引用
java-bloomfilter的网页。
2. 项目的使用说明
2.1 创建 Bloom Filter
要创建一个空的 Bloom Filter,可以使用以下代码:
double falsePositiveProbability = 0.1;
int expectedNumberOfElements = 100;
BloomFilter<String> bloomFilter = new BloomFilter<String>(falsePositiveProbability, expectedNumberOfElements);
构造函数会根据给定的误判概率和预期元素数量,自动选择合适的长度和哈希函数数量。
2.2 添加元素
使用 add() 方法向 Bloom Filter 中添加元素:
bloomFilter.add("foo");
2.3 检查元素
使用 contains() 方法检查元素是否存在于 Bloom Filter 中:
bloomFilter.contains("foo"); // 返回 true
注意,contains() 方法可能会返回误判结果(false positive),但不会出现漏判(false negative)。
2.4 完整示例
以下是一个完整的示例代码:
double falsePositiveProbability = 0.1;
int expectedSize = 100;
BloomFilter<String> bloomFilter = new BloomFilter<String>(falsePositiveProbability, expectedSize);
bloomFilter.add("foo");
if (bloomFilter.contains("foo")) { // 总是返回 true
System.out.println("BloomFilter contains foo!");
System.out.println("Probability of a false positive: " + bloomFilter.expectedFalsePositiveProbability());
}
if (bloomFilter.contains("bar")) { // 应该返回 false,但可能会返回 true
System.out.println("There was a false positive.");
}
3. 项目 API 使用文档
3.1 构造函数
-
BloomFilter(double falsePositiveProbability, int expectedNumberOfElements)- 根据误判概率和预期元素数量创建 Bloom Filter。
-
BloomFilter(int bitSetSize, int expectedNumberOfElements)- 根据位集大小和预期元素数量创建 Bloom Filter。
-
BloomFilter(int bitSetSize, int expectedNumberOfElements, int numberOfHashFunctions)- 根据位集大小、预期元素数量和哈希函数数量创建 Bloom Filter。
3.2 方法
-
void add(T element)- 向 Bloom Filter 中添加元素。
-
boolean contains(T element)- 检查元素是否存在于 Bloom Filter 中。
-
double expectedFalsePositiveProbability()- 返回预期的误判概率。
-
int getExpectedBitsPerElement()- 返回预期的每元素位数。
-
int getBitsPerElement()- 返回实际的每元素位数。
4. 项目安装方式
4.1 通过 JAR 文件安装
- 下载并编译项目。
- 将生成的
dist/java-bloomfilter.jar文件添加到你的项目中。
4.2 通过源码集成
- 下载
BloomFilter.java文件。 - 将文件直接复制到你的项目中,并保留 LGPL 许可证注释。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1