Bloom Filter 项目技术文档
2024-12-24 21:17:08作者:宣利权Counsellor
1. 安装指南
1.1 环境要求
在开始安装之前,请确保您的系统满足以下要求:
- Python 3.6 或更高版本
- 安装了
pip包管理工具
1.2 安装步骤
- 打开终端或命令行工具。
- 使用
pip安装项目所需的依赖包:pip install bloomfilter - 安装完成后,您可以通过以下命令验证安装是否成功:
python -c "import bloomfilter; print(bloomfilter.__version__)"
2. 项目的使用说明
2.1 基本概念
Bloom Filter 是一种高效的数据结构,用于判断一个元素是否存在于一个集合中。它的特点是:
- 快速查询:能够在常数时间内判断元素是否存在。
- 内存高效:使用较少的内存空间。
- 概率性:可能会出现误判(false positive),但不会出现漏判(false negative)。
2.2 使用示例
以下是一个简单的使用示例,展示如何创建一个 Bloom Filter 并添加元素:
from bloomfilter import BloomFilter
# 创建一个 Bloom Filter,设置容量为1000,误判率为0.01
bf = BloomFilter(capacity=1000, error_rate=0.01)
# 添加元素
bf.add("apple")
bf.add("banana")
# 检查元素是否存在
print("apple" in bf) # 输出: True
print("orange" in bf) # 输出: False
2.3 误判率控制
Bloom Filter 的误判率可以通过调整 capacity 和 error_rate 参数来控制。capacity 表示预计插入的元素数量,error_rate 表示期望的误判率。
3. 项目API使用文档
3.1 BloomFilter 类
-
__init__(capacity: int, error_rate: float): 初始化 Bloom Filter。capacity: 预计插入的元素数量。error_rate: 期望的误判率。
-
add(item: Any): 向 Bloom Filter 中添加一个元素。item: 要添加的元素。
-
__contains__(item: Any) -> bool: 检查元素是否存在于 Bloom Filter 中。item: 要检查的元素。- 返回值:
True表示元素可能存在,False表示元素一定不存在。
3.2 其他方法
clear(): 清空 Bloom Filter 中的所有元素。__len__(): 返回 Bloom Filter 中已插入的元素数量。
4. 项目安装方式
4.1 通过 pip 安装
pip install bloomfilter
4.2 从源码安装
- 克隆项目仓库:
git clone https://github.com/your-repo/bloomfilter.git - 进入项目目录:
cd bloomfilter - 安装依赖:
pip install .
通过以上步骤,您可以成功安装并使用 Bloom Filter 项目。希望这篇文档能帮助您更好地理解和使用 Bloom Filter。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
520
3.7 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1