SquishIt: .NET 资产优化库指南
项目介绍
SquishIt 是一个专为 .NET 网络应用程序设计的资产优化库。它通过创建捆绑包来简化 CSS 和 JavaScript 的合并与压缩过程。该库支持多种预处理器,如 LESS、CoffeeScript、SASS/SCSS 及 Hogan 模板,允许你在预处理管道中利用这些技术。此外,SquishIt 提供了向 Amazon S3 写入合并文件的功能,作为与自选 CDN 集成的基础模板。对于受限于中等信任环境的应用,提供了在内存中构建和缓存捆绑包的选项,以避免对应用工作目录的写权限需求。
项目快速启动
要迅速开始使用 SquishIt,首先确保你的开发环境已准备就绪,包括安装了 Visual Studio 和必要的编译工具。推荐的方式是通过 NuGet 包管理器来集成 SquishIt 到你的项目中。以下是适用于 ASP.NET MVC 项目的快速示例:
安装 SquishIt
在 Visual Studio 的 包管理器控制台 中运行以下命令来安装 SquishIt:
Install-Package SquishIt
使用示例
在你的视图或代码中,你可以这样来合并并压缩 CSS 和 JavaScript 文件:
// 合并 CSS 文件
BundleContext.Context.AddStyle("/content/style.css", "/content/theme.css");
var css = BundleContext.Context.RenderStyle().ToHtmlString();
// 合并 JavaScript 文件
BundleContext.Context.AddScript("~/Scripts/jquery.js", "~/Scripts/app.js");
var js = BundleContext.Context.RenderScript().ToHtmlString();
然后在视图中插入生成的链接和脚本标签:
<html>
<head>
<title>SquishIt 示例</title>
@Html.Raw(css)
</head>
<body>
<!-- 页面内容 -->
<script>@Html.Raw(js)</script>
</body>
</html>
应用案例和最佳实践
在实现性能优化时,采用 SquishIt 的最佳实践包括按需加载资源、利用浏览器缓存策略,并确保生产环境中启用所有压缩选项。为了提升站点加载速度,可以考虑将 CSS 放置于 <head> 中以尽快渲染页面结构,而 JavaScript 应尽量放在页面底部,减少阻塞渲染的可能性。
典型生态项目
SquishIt 的生态系统提供了丰富的扩展,以满足不同场景的需求:
- SquishIt.Mvc: 专为 ASP.NET MVC 提供的扩展,简化了框架内的整合。
- SquishIt.Less: 增加了对 LESS 编译的支持,让使用动态样式表变得更加便捷。
- SquishIt.Sass: 添加了对 SASS/SCSS 文件的处理能力,支持现代前端开发的流行选择。
- BrickPile: 基于 RavenDB 和 ASP.NET MVC 5 构建的轻量级CMS,展示如何在实际项目中利用SquishIt进行静态资源管理。
通过这些生态项目和扩展,开发者可以根据自己的需求灵活选择,从而在 .NET 应用程序中更有效地管理和优化前端资源。
以上就是关于 SquishIt 使用的基本指引,涵盖了其简介、快速启动流程、应用实例及生态系统的概览。希望这能够帮助您高效地在 .NET 项目中集成和使用 SquishIt。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00