Spark-Bench:Apache Spark基准测试套件
项目介绍
Spark-Bench 是一个灵活的用于基准测试和模拟Apache Spark作业的系统。它设计来支持传统基准测试、集群压力测试、多用户并发访问场景模拟等多样化任务。本项目目前与Spark 2.1.1版本兼容,并且理论上支持所有Spark 2.x系列。值得注意的是,Spark-Bench使用Scala 2.11.8编写,因此不适用于运行Scala 2.10.x的Spark版本。新版本经过了彻底重写,引入更多功能,但尚不完全具备旧版的所有特性,旧版可在legacy分支找到。
项目快速启动
快速启动Spark-Bench,首先确保您的开发环境中已安装好JDK、Hadoop和Apache Spark。以下是简化的步骤:
-
克隆项目:
git clone https://github.com/CODAIT/spark-bench.git -
构建项目(假设您已拥有构建工具如sbt):
cd spark-bench sbt clean compile assembly -
配置Spark提交参数:根据文档中提供的指南,在项目内定义或调整配置文件以适应您的测试环境。
-
运行基准测试:使用生成的jar文件执行测试,示例命令可能如下:
spark-submit --class com.ibm.sparktc.sparkbench.main.MainDriver path/to/spark-bench.jar --workloads <comma_separated_workload_names>
应用案例和最佳实践
Spark-Bench的使用范围广泛,包括但不限于:
- 性能评估:通过设定不同的工作负载来评估Spark集群的处理速度和资源利用效率。
- 压力测试:模拟高并发场景,验证集群在极端条件下的稳定性和响应能力。
- 调优指导:分析基准测试结果,找出性能瓶颈,对Spark应用程序进行优化。
最佳实践包括详细规划测试环境,合理选择工作负载,以及对每次测试进行全面记录和分析。
典型生态项目整合
Spark-Bench作为Spark生态系统的一部分,可以与多种数据处理和存储技术结合使用,比如HDFS、Cassandra、Kafka等。它特别适合那些想要在特定数据存储和Spark作业之间进行集成测试的开发者和运维团队。例如,如果要整合Kafka流处理测试,您需要确保Kafka服务已在本地或远程运行,然后在Spark-Bench的工作负载配置中指定对应的Kafka主题和其他连接参数。
为了具体实现这些生态整合,通常需要深入阅读每个相关组件的官方文档,调整Spark-Bench的配置以匹配特定的服务端点和认证机制。这确保了您可以充分利用Spark-Bench对整个大数据栈进行综合评估和测试。
以上就是基于Spark-Bench的简易入门指南。对于更复杂的应用和细致的配置细节,请参考Spark-Bench官方文档,其中包含详细的案例研究和技术说明。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00