Spark-TPCDS-Datagen 使用教程
1. 项目介绍
spark-tpcds-datagen 是一个用于 Apache Spark 的 TPC-DS 数据生成器。它从 spark-sql-perf 中分离出来,并包含了为 Mac/Linux x86_64 平台预构建的 tpcds-kit。该项目的主要目的是帮助用户生成 TPC-DS 数据,以便进行性能回归测试。
TPC-DS 是业界标准的决策支持系统性能测试基准,涵盖了多种查询类型和数据维护操作。通过使用 spark-tpcds-datagen,用户可以轻松生成大规模的 TPC-DS 数据集,并在 Spark 环境中运行查询,评估系统的性能。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下软件:
- Apache Spark 3.0.1 或更高版本
- Java 8 或更高版本
- Git
2.2 克隆项目
首先,克隆 spark-tpcds-datagen 项目到本地:
git clone https://github.com/maropu/spark-tpcds-datagen.git
cd spark-tpcds-datagen
2.3 生成 TPC-DS 数据
你可以使用以下命令生成 TPC-DS 数据:
./bin/dsdgen --output-location /tmp/spark-tpcds-data
2.4 运行 TPC-DS 查询
生成数据后,你可以使用以下命令在 Spark 中运行 TPC-DS 查询:
./bin/spark-submit \
--class org.apache.spark.sql.execution.benchmark.TPCDSQueryBenchmark \
--jars $SPARK_HOME/core/target/spark-core_<scala-version>-<spark-version>-tests.jar \
$SPARK_HOME/sql/catalyst/target/spark-catalyst_<scala-version>-<spark-version>-tests.jar \
$SPARK_HOME/sql/core/target/spark-sql_<scala-version>-<spark-version>-tests.jar \
--data-location /tmp/spark-tpcds-data
3. 应用案例和最佳实践
3.1 性能回归测试
spark-tpcds-datagen 主要用于性能回归测试。通过生成不同规模的数据集,用户可以在 Spark 环境中运行 TPC-DS 查询,评估系统的性能变化。这对于开发和优化 Spark SQL 引擎非常有用。
3.2 数据仓库性能评估
TPC-DS 数据集可以用于评估数据仓库的性能。通过在 Spark 中运行 TPC-DS 查询,用户可以了解数据仓库在处理大规模数据时的性能表现,从而优化数据仓库的设计和配置。
3.3 查询优化
通过分析 TPC-DS 查询的执行计划和性能指标,用户可以发现查询中的瓶颈,并进行相应的优化。这对于提高查询性能和系统整体效率非常有帮助。
4. 典型生态项目
4.1 Spark SQL
spark-tpcds-datagen 是基于 Apache Spark SQL 开发的,因此与 Spark SQL 紧密集成。用户可以在 Spark SQL 中直接使用生成的 TPC-DS 数据集,进行查询和分析。
4.2 Spark-SQL-Perf
spark-sql-perf 是一个用于性能测试的工具包,包含了多种基准测试工具。spark-tpcds-datagen 是从 spark-sql-perf 中分离出来的,专门用于生成 TPC-DS 数据。
4.3 TPCDS-Kit
tpcds-kit 是 TPC-DS 基准测试的官方工具包,包含了数据生成和查询生成工具。spark-tpcds-datagen 集成了 tpcds-kit,为用户提供了方便的数据生成功能。
通过这些生态项目的结合使用,用户可以构建一个完整的性能测试和优化平台,提升大数据处理系统的性能和效率。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00