NVIDIA TensorRT 开源项目教程
2024-08-07 04:55:48作者:侯霆垣
1. 项目的目录结构及介绍
NVIDIA TensorRT 是一个用于高性能深度学习推理的 SDK,其开源项目包含多个组件和示例应用程序。以下是项目的目录结构及其介绍:
TensorRT/
├── CMake/
├── demo/
├── docs/
├── docker/
├── Makefile
├── onnx-graphsurgeon/
├── parsers/
│ ├── onnx/
│ └── uff/
├── plugin/
├── samples/
│ ├── common/
│ ├── uff_ssd/
│ └── ...
├── tools/
├── README.md
└── ...
- CMake/: 包含用于构建项目的 CMake 配置文件。
- demo/: 包含一些演示应用程序。
- docs/: 包含项目的文档,如用户指南和 API 参考。
- docker/: 包含用于构建 Docker 容器的配置文件。
- Makefile: 用于构建项目的 Makefile。
- onnx-graphsurgeon/: 包含用于 ONNX 图操作的工具。
- parsers/: 包含模型解析器,如 ONNX 和 UFF 解析器。
- plugin/: 包含自定义插件的实现。
- samples/: 包含示例应用程序,展示如何使用 TensorRT。
- tools/: 包含各种工具和脚本。
- README.md: 项目的主 README 文件,包含项目的基本信息和使用说明。
2. 项目的启动文件介绍
TensorRT 项目的启动文件通常是示例应用程序中的主文件。以下是一个典型的启动文件示例:
# samples/sampleMNIST/sampleMNIST.py
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
# 创建 TensorRT 引擎
def build_engine(model_file):
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
with open(model_file, 'rb') as model:
parser.parse(model.read())
return builder.build_cuda_engine(network)
# 加载模型并进行推理
def main():
model_file = "mnist.onnx"
engine = build_engine(model_file)
# 进行推理...
if __name__ == "__main__":
main()
- sampleMNIST.py: 这是一个示例应用程序,用于加载 MNIST 模型并进行推理。
- build_engine: 函数用于创建 TensorRT 引擎。
- main: 主函数,加载模型并进行推理。
3. 项目的配置文件介绍
TensorRT 项目的配置文件通常是用于构建和运行示例应用程序的配置文件。以下是一个典型的配置文件示例:
# samples/common/config.py
import os
# 配置参数
MODEL_FILE = "mnist.onnx"
BATCH_SIZE = 1
MAX_WORKSPACE_SIZE = 1 << 30
# 其他配置参数...
- config.py: 包含示例应用程序的配置参数。
- MODEL_FILE: 指定模型文件的路径。
- BATCH_SIZE: 指定批处理大小。
- MAX_WORKSPACE_SIZE: 指定最大工作空间大小。
以上是 NVIDIA TensorRT 开源项目的基本教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能帮助你更好地理解和使用 TensorRT 项目。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1