Diffusion-based-Fluid-Super-resolution 项目教程
2024-09-12 04:42:48作者:宣聪麟
1. 项目介绍
概述
Diffusion-based-Fluid-Super-resolution 是一个基于 PyTorch 的开源项目,旨在通过扩散模型实现计算流体动力学(CFD)数据的超分辨率重建。该项目基于论文 "A Physics-informed Diffusion Model for High-fidelity Flow Field Reconstruction" 实现,利用 Denoising Diffusion Probabilistic Models (DDPM) 进行高保真流场数据的重建。
主要特点
- 仅依赖高分辨率数据训练:与许多需要低分辨率和高分辨率数据对进行训练的深度学习模型不同,DDPM 仅使用高分辨率数据进行训练,这使得模型在重建高保真 CFD 数据时更加独立于低分辨率数据的分布。
- 物理信息条件:项目支持物理信息条件下的模型训练和超分辨率生成,使得模型在处理不同数据模式时更加灵活。
2. 项目快速启动
环境准备
确保你的环境满足以下要求:
- Python 3.8
- PyTorch 1.7 + CUDA 10.1 + torchvision 0.8.2
- TensorBoard 2.11
- Numpy 1.22
- tqdm 4.59
- einops 0.4.1
- matplotlib 3.6.2
安装步骤
-
克隆项目仓库:
git clone https://github.com/BaratiLab/Diffusion-based-Fluid-Super-resolution.git cd Diffusion-based-Fluid-Super-resolution -
安装依赖:
pip install -r requirements.txt
数据准备
下载高分辨率和低分辨率数据,并将其保存到 /data/ 目录下。
模型训练
在 /train_ddpm/ 目录下运行以下命令进行模型训练:
bash train.sh
或者使用 Python 脚本:
python main.py --config /km_re1000_rs256_conditional.yml --exp /experiments/km256/ --doc /weights/km256/ --ni
超分辨率生成
将训练好的模型检查点文件(如 baseline_ckpt.pth)添加到 /pretrained_weights/ 目录下,然后在项目根目录下运行以下命令进行超分辨率生成:
python main.py --config kmflow_re1000_rs256.yml --seed 1234 --sample_step 1 --t 240 --r 30
3. 应用案例和最佳实践
应用案例
- 流场数据重建:通过扩散模型对低分辨率的流场数据进行超分辨率重建,生成高保真的流场数据。
- 物理信息条件下的数据生成:在物理信息条件下,模型能够更好地适应不同的数据模式,生成更符合物理规律的数据。
最佳实践
- 数据预处理:确保输入数据的质量和一致性,以提高模型的训练效果。
- 模型调优:根据具体应用场景调整模型参数,如学习率、批量大小等,以获得最佳的模型性能。
4. 典型生态项目
相关项目
- SDEdit:基于随机微分方程的图像合成和编辑工具,提供了扩散模型的基础实现。
- Denoising Diffusion Implicit Models (DDIM):另一种基于扩散模型的图像生成方法,与 DDPM 有相似的理论基础。
生态系统
这些项目共同构成了一个丰富的生态系统,涵盖了从基础理论研究到实际应用的多个方面,为流体动力学数据的超分辨率重建提供了强大的工具支持。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248