Pangolin项目在Ubuntu 20.04上的构建问题及解决方案
Pangolin是一个轻量级的3D可视化库,广泛应用于计算机视觉和机器人领域。在Ubuntu 20.04系统上构建该项目时,用户可能会遇到依赖项安装失败的问题,特别是关于catch2测试框架的缺失。
问题背景
Ubuntu 20.04 LTS(Focal Fossa)作为长期支持版本,目前仍被广泛使用。然而,该系统的软件仓库中并未包含catch2测试框架包,这个包是在后续的Ubuntu 22.04 LTS(Jammy Jellyfish)版本中才被引入官方仓库的。
技术分析
catch2是一个现代的C++测试框架,Pangolin项目将其用于单元测试。在构建过程中,安装脚本会尝试安装所有推荐的依赖项,包括测试所需的catch2。当系统无法找到这个包时,构建过程就会中断。
解决方案
对于必须在Ubuntu 20.04上构建Pangolin的用户,有以下几种可行的解决方案:
-
跳过测试构建:由于catch2仅用于测试目的,可以修改安装脚本,暂时移除对catch2的依赖,构建不包含测试的主程序。
-
手动安装catch2:可以从源代码编译安装catch2,或者使用其他包管理方式(如conan或vcpkg)获取该依赖项。
-
升级系统:考虑将系统升级到Ubuntu 22.04 LTS,这是官方CI测试支持的版本,可以避免此类兼容性问题。
最佳实践建议
对于生产环境,建议使用官方CI测试过的Ubuntu 22.04 LTS版本进行构建,以确保所有依赖项都能正确安装。如果必须使用Ubuntu 20.04,可以选择跳过测试构建,但需要注意这可能会影响对代码质量的验证。
对于开发环境,可以考虑使用容器技术(如Docker)创建一个基于Ubuntu 22.04的构建环境,这样既能保持主机系统的稳定性,又能获得完整的构建支持。
总结
开源项目的依赖管理经常会遇到不同Linux发行版和版本间的兼容性问题。理解这些问题的根源并掌握相应的解决方法,对于开发者来说是一项重要的技能。在Pangolin这个案例中,我们看到了如何通过调整构建策略来解决特定系统版本下的依赖问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00