Great Expectations 项目中数据文档被意外删除的问题分析与解决方案
问题背景
在使用Great Expectations(GE)框架进行数据验证时,用户遇到了一个棘手的问题:存储在Google Cloud Storage(GCS)中的数据文档会不定期被删除。这个问题发生在数据验证流程中,特别是在执行UpdateDataDocsAction操作时,虽然验证计算本身是正确的,但数据文档的更新过程会出现异常。
问题现象
用户在使用GE框架构建的数据验证流程中,发现以下现象:
- 数据文档会不定期从GCS存储中被删除
- 删除行为没有固定规律,可能在4次、6次或更多次运行后发生
- 验证计算本身是成功的,问题出现在更新数据文档阶段
- 使用Spark DataFrame作为数据源,运行在Google Cloud环境中
技术分析
通过分析用户提供的代码,我们可以发现几个潜在的问题点:
-
频繁删除和重建资源:代码中在每次验证时都会删除并重新创建Expectation Suite和Checkpoint,这种操作模式可能会影响数据文档的稳定性。
-
时序问题:删除操作和更新操作之间可能存在时序上的竞争条件,特别是在分布式环境中。
-
引用完整性:当Suite被删除时,与之关联的数据文档中的引用可能变为无效,导致整个数据文档被清理。
解决方案
1. 避免频繁删除重建资源
建议修改资源管理策略,从"删除后重建"改为"增量更新":
# 修改前的删除逻辑
try:
self._context.suites.delete(self._suite_name)
except DataContextError as e:
_logger.info(f"Expectation suite with name {self._suite_name} does not exist yet: {e}")
# 修改后的增量更新逻辑
try:
suite = self._context.suites.get(self._suite_name)
suite.expectations = [] # 清空现有expectations
except DataContextError:
suite = gx.ExpectationSuite(name=self._suite_name, id=self._suite_name)
2. 优化Checkpoint管理
对于Checkpoint,同样可以采用增量更新策略而非删除重建:
# 修改Checkpoint管理逻辑
try:
checkpoint = self._context.checkpoints.get(self._checkpoint_name)
# 更新Checkpoint配置
checkpoint.validation_definitions = [...]
checkpoint.actions = [...]
except DataContextError:
# 创建新的Checkpoint
checkpoint = gx.Checkpoint(...)
3. 加强错误处理和日志记录
在关键操作周围添加更详细的日志记录,帮助诊断问题:
_logger.debug("开始更新数据文档...")
try:
self._context.checkpoints.get(self._checkpoint_name).run(...)
except Exception as e:
_logger.error(f"更新数据文档时发生错误: {str(e)}", exc_info=True)
raise
最佳实践建议
-
资源生命周期管理:对于Expectation Suite和Checkpoint这类资源,建议采用长期维护而非频繁重建的策略。
-
版本控制:考虑为Expectation Suite实现版本控制机制,而不是直接删除。
-
监控机制:实现数据文档完整性的监控,在文档被意外删除时能够及时发现并报警。
-
隔离环境:为不同的数据源或验证流程使用独立的存储前缀,减少相互影响。
总结
Great Expectations框架在数据质量验证方面功能强大,但在资源管理和存储操作上需要特别注意。通过避免频繁的资源删除重建、优化操作时序以及加强错误处理,可以有效解决数据文档被意外删除的问题。对于生产环境中的关键数据验证流程,建议采用更稳健的资源管理策略,确保数据文档的持久性和可靠性。
对于使用Google Cloud Storage作为后端存储的场景,还需要特别注意分布式环境下的操作一致性问题,适当增加重试机制和并发控制可能会进一步提升系统的稳定性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00