Great Expectations 中同一列添加多个期望的注意事项
在数据质量验证工具 Great Expectations 的使用过程中,开发者可能会遇到一个常见但容易被忽视的问题:当尝试为同一数据列添加多个不同类型的期望(Expectation)时,某些期望可能会意外丢失。本文将深入分析这一现象的原因,并提供解决方案。
问题现象
当开发者尝试为同一列同时添加"值不为空"(ExpectColumnValuesToNotBeNull)和"值唯一"(ExpectColumnValuesToBeUnique)两个期望时,发现只有其中一个期望被成功添加到期望套件(Expectation Suite)中,而另一个期望则神秘消失,且没有任何错误提示。
根本原因
经过技术团队分析,这个问题源于 Great Expectations 内部对期望对象的相等性判断逻辑。在 v1.3.0 版本中,系统错误地将这两个不同类型的期望评估为"相等",导致在添加第二个期望时,系统认为它已经存在于套件中而不再添加。
这种相等性判断是基于期望的某些核心属性进行的,而在这两个期望的实现中,这些核心属性的比较结果意外地返回了"相等"。
解决方案
Great Expectations 团队已经在 v1.3.1 版本中修复了这个问题。修复的核心是调整了期望对象的相等性判断逻辑,确保不同类型的期望能够被正确识别和区分。
对于正在使用受影响版本的用户,可以采取以下临时解决方案:
-
升级到最新版本:建议升级到已修复该问题的 Great Expectations 版本。
-
手动创建期望套件:可以通过直接编辑期望套件的 JSON 定义文件来手动添加多个期望。
-
使用循环添加期望:如社区建议的,可以使用循环结构逐个添加期望,确保每个期望都被正确处理。
最佳实践
为了避免类似问题,建议开发者在为同一列添加多个期望时:
- 始终验证期望套件中的实际内容是否包含所有预期的期望
- 考虑使用单元测试来验证期望套件的构建逻辑
- 保持 Great Expectations 版本的更新,以获取最新的修复和改进
结论
数据质量验证是数据工程中的重要环节,Great Expectations 作为主流工具之一,其稳定性和可靠性至关重要。通过理解这类问题的成因和解决方案,开发者可以更有效地构建健壮的数据质量检查流程,确保数据验证的全面性和准确性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C031
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00