OpenLLMetry项目中AI服务异步调用问题的分析与解决
问题背景
在OpenLLMetry项目的0.31.3版本中,开发团队为AI服务 instrumentation添加了asyncio.run()调用,这一改动导致了一个严重的兼容性问题。当开发者尝试在异步函数中调用AI服务 API时,系统会抛出"asyncio.run() cannot be called from a running event loop"的运行时错误。
问题现象
在0.31.2版本中,开发者可以正常地在async函数中调用AI服务的API端点。然而,从0.31.3版本开始,由于引入了asyncio.run(),这种调用方式会导致失败。具体表现为:
- 当在async函数中调用ai_service.embeddings.create()等API时
- 系统会抛出RuntimeError,提示无法在运行的事件循环中调用asyncio.run()
- 同时会伴随"coroutine '_handle_request' was never awaited"的警告
技术分析
问题的根源在于OpenLLMetry的instrumentation代码中直接使用了asyncio.run()来执行异步请求处理。这在同步调用场景下工作正常,但当代码本身已经在异步上下文中运行时,就会导致冲突。
具体来说,当开发者在一个async函数中调用AI服务 API时:
- 外层已经有一个运行中的事件循环(由asyncio.run()或类似机制启动)
- instrumentation代码又尝试启动一个新的asyncio.run()
- Python不允许在一个运行中的事件循环中再启动另一个事件循环
解决方案
针对这个问题,OpenLLMetry项目应该考虑以下改进方向:
-
上下文感知:instrumentation代码需要检测当前是否在异步上下文中运行,如果是,则直接await异步操作;如果不是,才使用asyncio.run()
-
统一异步接口:提供专门的异步客户端接口,如async_ai_service_client,让开发者可以明确地使用await语法
-
兼容性处理:对于同步调用场景,保持现有的asyncio.run()机制;对于异步场景,则采用不同的处理路径
临时解决方案
对于遇到此问题的开发者,在官方修复发布前,可以考虑以下临时解决方案:
- 回退到0.31.2版本
- 将AI服务 API调用移到同步函数中
- 使用专门的异步客户端接口(如果项目提供)
最佳实践建议
在使用OpenLLMetry监控AI服务调用时,建议开发者:
- 明确区分同步和异步调用场景
- 对于异步代码,使用项目提供的专门异步接口
- 关注项目更新,及时升级到包含修复的版本
- 在复杂异步场景中,考虑使用更细粒度的instrumentation控制
这个问题提醒我们,在开发监控和instrumentation工具时,需要特别注意异步编程模型的兼容性问题,确保工具在各种调用场景下都能正常工作。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00