OpenLLMetry项目中OpenAI Assistant API监控功能的Token统计问题分析
背景介绍
在OpenLLMetry项目的OpenAI监控组件中,开发者发现了一个关于Assistant API调用的监控数据不完整问题。该项目主要用于对各类生成式AI服务进行监控和追踪,但在处理OpenAI Assistant API的响应时,未能正确捕获关键的Token使用量数据。
问题现象
当开发者使用OpenAI Assistant API时,监控系统存在两个明显的功能缺失:
- 
系统属性标识缺失:监控数据中缺少
gen_ai.system=openai这一关键标识,这使得后续的数据分析和归类变得困难。 - 
Token统计信息丢失:虽然OpenAI Assistant API的响应中包含了详细的Token使用数据(包括prompt tokens、completion tokens和total tokens),但监控系统未能将这些数据记录到追踪信息中。
 
技术分析
监控数据收集机制
在标准的OpenAI API调用监控中,系统通常会从API响应中提取以下关键信息:
- 系统标识:用于区分不同的AI服务提供商
 - Token用量:反映API调用的资源消耗情况
 - 响应内容:用于调试和分析
 
问题根源
通过对代码的分析,我们发现问题的根源在于:
- 
系统属性设置遗漏:在创建监控span时,没有显式设置系统标识属性。
 - 
Token统计处理逻辑不完整:监控组件没有从
run.usage对象中提取Token使用数据,即使这些数据已经包含在API响应中。 
解决方案建议
要解决这个问题,需要在监控组件中做以下改进:
- 
添加系统标识:在创建span时,应当明确设置系统属性:
span.set_attribute("gen_ai.system", "openai") - 
完善Token统计处理:应当从API响应中提取Token使用数据并记录到监控信息中:
if hasattr(run, 'usage') and run.usage: span.set_attribute("gen_ai.usage.prompt_tokens", run.usage.prompt_tokens) span.set_attribute("gen_ai.usage.completion_tokens", run.usage.completion_tokens) span.set_attribute("gen_ai.usage.total_tokens", run.usage.total_tokens) 
影响评估
这个问题的存在会导致:
- 
监控数据不完整:无法准确统计API调用的资源消耗情况。
 - 
数据分析困难:缺少系统标识使得跨系统比较和分析变得复杂。
 - 
计费估算不准确:Token使用量是OpenAI API计费的重要依据,缺少这些数据会影响成本估算。
 
最佳实践建议
对于使用OpenLLMetry监控OpenAI服务的开发者,建议:
- 
及时更新到修复后的版本。
 - 
在自定义监控逻辑时,确保捕获所有关键的API响应数据。
 - 
定期检查监控数据的完整性,特别是Token使用量等关键指标。
 
总结
OpenLLMetry作为生成式AI服务的监控工具,其数据收集的完整性至关重要。本次发现的OpenAI Assistant API监控问题虽然看似简单,但直接影响到了监控数据的实用性和准确性。通过修复这个问题,可以显著提升监控系统的数据质量,为后续的性能分析和成本优化提供可靠依据。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00